Tmmmg Dphznfzp;ﬁm
— D an//e/iw

© Dvin Povalled - Swo pwitss . wulbi - thiesded — oppronch thot ek when the prodel firs om
o orge GPU. Fuch GPy pesps o copy of the pockl , povesses diffaent migwboriches
+hen preres Pochon’s powss GPYUs .
/Yon | Bottlenech : PW/ on Shle- pritss , multti- theel pammumietion — ihPfffam 1N¥r- CoPU - Communiiartson
arol prlentinl Shuolaan olue 4o GPV Dverhead
The bintest problem of “ Sngjle profes ubictheed " i (1L contentan

DataParallel DistributedDataParallel
& G % cpu1 | [cruz | [erus|[crua
Model Model Model o = = o

o o o o
@ @ @ Model Model Model jodel
e
Main Process 3Inter-ProéessComm;mication
H H] A
Inter-Process C icati

* Synchynizotion ép,mm/w; . A4 +he end of each minborich , woopos el to sync chents Jweights o moiol - Stodentss
Twe Sinch @Fmdles ;
A Pulk Qfmh Paaller (BSP)
Def: wovas sy ot the ewl of o punbotch
V i pernts podel veights stoleness - providis gaeol [erane - effririy
A Fouh jachie neel o hott avol wim fr pthers Qrclyont
2. Peynch Powoilel (Asp)
Ve Toth noper poussts the oot psjch With po whinhg or - Stalles.
X Fasly Shwle weghts beid nsedd thns lowey the statys sl e
e{f’”""“) =D > Gerpyiutin - fivg but . not e up tmnag fhe t2
Toke hovol worh ! vonente.
Hw 4o sdwe?

s DDP Cp)‘ﬁ'fh'bl/tko{ Dortee P»or//@l)" :Eﬂd'l G)PU Lwr/)py))pg s pun PWWSS OIY]D/ (an I//DV/Z o ﬂvu/h})IP
pocles /mathives . Use Pung All-Pecdue oo 1o tuorel tenml Jorlorech.
DPP)’\0'5 [over DD"fWMW oevhecel . thon M])amlle(
2P0 (2ew Pedundorcy Ophimizey) - Vol only - pioctel puometers oind qrad’/enk , but ol the optimizer
Spln- sde ,nol plit computation stovie (Addom momentum . Umome) olso fopes o [ot o—f renow
pllel Strase . not paralled oo»fwwwm It has 2 pom optimizetim SW'%“
sruge | Tortitioned (omponent \/V\ij pedluction ,&mwm‘mﬂw bt | Vol

ZepO-| Oprimizey Srortes b = PP Revomord, !
2eb0-2 L adievty 8 X Dp (ombived with 2 po-|
2ek0-? Model Farometers Lineow [0% 6Pp— pyx) | +sk ot mmony i s

@mma@; 2P0 purtitions cptimier: Gates . Jorfints . moclel purveters | 0vossolifferent Pk
ochigke Vi ingo mgmony sapmys ishile peeprty e compution |ogic brthomiee.

drangaton | Pimins . Ave the bui(dlv\g Hotps -ﬁw distnbuteol %mmm\j ond used 42 57mh Pavtimelers |
Ovaclionis . optivper st | efficiantly ocvise pultiple GPUs | or nocks.
All - Beduce - Gynch godients
EW.W) yong Shis with ifs gun fensor , ends up with | the veduition (sum [mean | mox)...)
2ot ol ymps
lmP\meJn'om
All - Reduce = Peclure-scartter (tompute he olobal sum .shaved) + | All-ather (Plongmict +he futl Sommeol
tensor on owr yimp)

€9. Pank 090 | — Gili-wdute op SUNI- Sum (90-gN-D o reny 1o
/Zom}? Il -4
Bank vt : G

PireyAll-Redue s Topolegy: yonhs fom o ying . coch step eueny Yo sends to_fts_ vight nbihbor wd recisge fom itslef.
Min borduwidth | boitlentcp —]Q»l\j 7 hvmoqmeous Lips C Milinps ;lmyqt’ X but Slow lf oo ery Seps
Two Stoges:
7 Pedue~Satter - veduce th’m/ chungs — while (ivalat
Y All-Gother : thoulode | veolueod chumps o foyore | (pfs the wwf/%e Yesule .
Lommmunication | (Jrevhead : Wth Yengr Sie X bym ond onps
{Eomh Yonp Sords /me;ws (V) mesaufes per phase
L Eoch messace jo 7 byes
> Jer _yonp toffie. 2x (N-1) % 45 bytes

Pecluce - Scardey: teduwed v Mimbs OV)/lj beep Youy 7.'/ shaecl.
used o¢ the [+ SRP i oPhMizeJ ol|-vedu s -

ej-Eack vomp Aps i TChunpo | chunp | , 1 chump M1
A{wv yelwe -setder (SUM) -
Pomk 0 beng vedutee] Chunf o
Ponk | ﬁ@fs veluceel thunp 1

Al-Gohey - Each WR | Stork uith e ouh 7 Shard j evenjore enols with the «ﬁll conrenoreel | demspr.
nsed 015 Ahe piai Step fn Oan;'zad ol vecluted]

A 4
Punp 0 : chunp 0
Ramp | = chunp |
Peer

A vanps . T chunp 0 | Chunb i}, - Ichwp b3

Broodcast - One pwiets Sadls | claten +o ol others
e dwbmw) model Leightc o infr
Pedue - Dutd fom _all plocess - is Ydugd (g Sum) ancl | +he reulty | i sont | o siole | pouss
€ Al voinps = TSUMI = yank o | fus dhe reut.

bs ot fov synch Qrachonts, if need et on il Yonps — use otil- veclinteed
buner: | One prowess splits olwtn | dnol Serdls Olifferem Chunks 19 each | pwies

eﬁ' Pank @ i [Chunko) Chuh/el | 45
‘f Ponp | 9ot Chunk 0
> Pank s oets Chun} 1

| chunpnA1

s suitoble v c/f;bi[mhhj hm-mrlafpmg - batch 0r hor wssipmants pre-shoned b/v the | Yang 0 L yowb)
Owovther . Each powss serds datet o o Siqle pxess , which collels all the chitu

€9 Al vomps —> Yomp o olkts Tchwnbo, chunp | |, .. - chwp p1

peferente
k /V)egoran—/nL IZeDOl DeefsPeeo{ | Mixed Pk‘w'flbn
« Stomfool (S204N: Lecture 1> - Fffivont Toonn
. Sunfrol (32275: levwt o8 - Rovilelisn L ttwre.

+ Viginpwted Trhig with Py Tovch - (amplete betoriod with tloue infon] focke

DISTRIBUTED TRAINING
WITH PYTORCH

Umar Jamil

Downloaded from: hitps://github.com/hkproj/pytorch-transformer-distributed
License: Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0):

https: / /creativecommons.org/licenses /by-nc/4.0 /legalcode

Not for commercial use

Umar Jamil - https://github.com/hkproj/pytorch-transformer-distributed

https://github.com/hkproj/pytorch-transformer-distributed
https://github.com/hkproj/pytorch-transformer-distributed
https://creativecommons.org/licenses/by-nc/4.0/legalcode

Outline

* Introduction to distributed training
* Whywe need it
« Data Parallel vs Model Parallel
* Review of neural networks
* Loss function and gradient
* Gradient accumulation
+ Distributed Data Parallel training
* How it works
+ Communication primitives
. Broadcast operator
* Reduce operator
* All-Reduce operator
* Managing failover
+ Coding session
* Infrastructure (Paperspace)
* PyTorch code
* How PyTorch handles Distributed Data Parallel training
* Bucketing

+ Computation-Communication overlap during backpropagation

Umar Jamil - https://github.com/hkproj/pytorch-transformer-distributed

https://github.com/hkproj/pytorch-transformer-distributed

What is distributed training?

Imagine you want to train a Language Model on a very big dataset, for example the entire content of Wikipedia. The dataset is
quite big, because it is made up of millions of articles, each of them with thousands of tokens. To train this model on a single GPU
may be possible, but it poses some challenges:

1. The model may not fit on a single GPU: this happens when the model has many parameters.
2. You are forced to use a small batch size because a bigger batch size leads to an Out Of Memory error on CUDA.

3. The model may take years to train because the dataset is huge.

If any of the above applies to you, then you need to scale your training setup. Scaling can be done vertically, or horizontally. Let's
compare these two options.

Umar Jamil - https://github.com/hkproj/pytorch-transformer-distributed

https://github.com/hkproj/pytorch-transformer-distributed

Vertical scaling Horizontal scaling
ongy 15 all you need ! Strwteqy s ol g peed

No code change Minimal code change (thanks to PyTorch)

In this video we will explore horizontal scaling

1x Server 1x Server 1x Server 4x Servers
8GB RAM 64GB RAM 8GB RAM 8GB RAM
4GB GPU Memory 32GB GPU Memory 4GB GPU Memory 4GB GPU Memory (x2)

Umar Jamil - https://github.com/hkproj/pytorch-transformer-distributed

https://github.com/hkproj/pytorch-transformer-distributed

Data Parallelism vs Model Parallelism

If the model can fit within a single GPU, then we can distribute the training on multiple servers (each containing one or multiple
GPUs), with each GPU processing a subset of the entire dataset in parallel and synchronizing the gradients during

backpropagation. Thisoption is known as Data Parallelism.

— — — - —
b o 15 5 & o & & b) 19 b 19 o & b &) 5 19
< < < < < < < < < < < < < < < < < < < <
© @) © © @ © 1) © @) ©) @ 1) ©) @ ©)
< = = < B = & < 2 © < < = = < 2 < = < 2
- N w S = N w B - [w N - N w =y — N w »
-— : -—— -_— -— -—
— [T -— 11 |:| bnd i -— 1 -_— 11
T " -ﬂ""- |:| n T
L] L] L] L] | | L]
L L ¥ y L) L —

If the model cannot fit within a single GPU, then we need to “break” the model into smaller layers and let each GPU process a part

of the forward/backward step during gradient descent. This option is known as Model Parallelism.

— I — — — I — —
)] Q Q Q v Q ()
< < < < < N < » = =
o) [0} @ ® @ g g O g O
= = = = = = = =
— N w ES — N w EN

-— I -— - -— -—

-— m -— m - m -— m -— m

e B e e e
.
L . L . L L L .

In this video, we will focus on Data Parallelism.

Umar Jamil - https://github.com/hkproj/pytorch-transformer-distributed

https://github.com/hkproj/pytorch-transformer-distributed

Outline

* Introduction to distributed training
* Whywe need it
+ Data Parallel vs Model Parallel
* Review of neural networks
* Loss function and gradient
* Gradient accumulation
+ Distributed Data Parallel training
* How it works
+ Communication primitives
. Broadcast operator
* Reduce operator
* All-Reduce operator
* Managing failover
+ Coding session
* Infrastructure (Paperspace)
* PyTorch code
* How PyTorch handles Distributed Data Parallel training
* Bucketing

+ Computation-Communication overlap during backpropagation

Umar Jamil - https://github.com/hkproj/pytorch-transformer-distributed

https://github.com/hkproj/pytorch-transformer-distributed

A review of neural networks: a practical example

Imagine you want to train a neural network to predict the price (y,.eq) of @ house given two variables: the number of bedrooms in
the house (x;) and the number of bathrooms in the house (x,). We think that the relationship between the output and the input
variables is linear.

Ypred = X1Wq + x,w, + b

Our goal is to use stochastic gradient descent to find the values of the parameters w;, w, and b such that the MSE loss between the
actual house price (Y¢qrger) and the predicted (Vpreq) is minimized.

. 2
argmln(ypred - Ytarget)
wlw2,b

Umar Jamil - https://github.com/hkproj/pytorch-transformer-distributed

https://github.com/hkproj/pytorch-transformer-distributed

PyTorch’s training loop (without accumulation)

def train_no_accumulate(params: ModelParameters, num_epochs: int = 10, learning_rate: float = 1le-3):

for epoch in range(1l, num_epochs+1):
for (x1, x2), y_target in training_data:

z1 = x1 * params.wl

z2 = X2 * params.w2
y_pred = z1 + z2 + params.b

loss = (y_pred - y_target) ** 2

loss.backward()

with torch
params
params

params.

params
params
params

.no_

.wl -= learning_rate * params.wl.grad
.w2 -= learning_rate * params.w2.grad
b -= learning_rate * params.b.grad

.wl.grad.zero_()
.w2.grad.zero_()
.b.grad.zero_()

Umar Jamil - https://github.com/hkproj/pytorch-transformer-distributed

https://github.com/hkproj/pytorch-transformer-distributed

Computation graph

PyTorch will convert our neural network into a computational graph.

Vpreda = XaW1 +X,w, + b

° &

()

Let's visualize the training process one item
at a time using our computation graph. @

_ 2
Yprea =21t 23 + b l= (Ypred - ytarget)

Umar Jamil - https://github.com/hkproj/pytorch-transformer-distributed

https://github.com/hkproj/pytorch-transformer-distributed

Computational graph: step 1 (forward)

We run a forward step using the input x; = 6, x, = 2 and y;4rger = 15.

We initialize the weights as follows
@ Value=0.773

Grad=0

Vpreda = XaW1 +X,w, + b

6 ‘ 4.638
2 ‘

()

Now we call the loss.backward() method to
calculate the gradient of the loss function
w.r.t to each parameter. PyTorch will also
compute the gradient for the intermediate

n.odel.S, .i)ut | will not show them here for @ Value=0.321
simplicity. Grad=0

0.642

Ypreda = Z1 t 22 +b

@ Value=0.067

15

I= (}'pred - ytarget)2

93.180

Umar Jamil - https://github.com/hkproj/pytorch-transformer-distributed

https://github.com/hkproj/pytorch-transformer-distributed

Computational graph: step 1 (loss.backward)

Vpreda = XaW1 +X,w, + b

6

()

dl
m = 2Yprea — 2YVtarget = —19.306
2
Dprea _ 4
dz, (:)
ﬂ _al v dYpred — _19306

dz, dYpred dz,

le

—_— =6
dW1 xl
dl i Dpred Az _ 115836

dw; dYpred dzq dw,

@ Value=0.773
Grad=-115.836

‘ 4.638

@ Value=0.321
Grad=-38.612

0.642

5.347

Ypreda = Z1 t 22 +b

@ Value=0.067
Grad=-19.306

15

2

I= (}'pred - ytarget)

93.180

Umar Jamil - https://github.com/hkproj/pytorch-transformer-distributed

https://github.com/hkproj/pytorch-transformer-distributed

Computational graph: step 1 (optimizer.step)

Suppose the learning rate is a = 1073, Each parameter is updated as follows:

aram = param,;; — a X grad
p new = P old 9 Value=0.773 - a(-115.836) = 0.8888

15
Grad=-115.836

Vpreda = XaW1 +X,w, + b ‘

6 4.638

()

5.347

()

0.642 93.180

I _ 2
Yprea =21t 23 + b l= (}'pred - ytarget)

@ Value=0.067 - a(-19.306) = 0.0863

Grad=-19.306

@ Value=0.321 - a(-38.612) = 0.3596
Grad=-38.612

Umar Jamil - https://github.com/hkproj/pytorch-transformer-distributed

https://github.com/hkproj/pytorch-transformer-distributed

Computational graph: step 1 (optimizer.zero)

We reset the gradient of all the parameters to zero.

@ Value=0.8888

Grad=0

Vpreda = XaW1 +X,w, + b

6 4.638

o &
o &

0.642

@ Value=0.3596
Grad=0

Ypreda = Z1 t 22 +b

@ Value=0.0863

15

I= (}'pred - ytarget)2

93.180

Umar Jamil - https://github.com/hkproj/pytorch-transformer-distributed

https://github.com/hkproj/pytorch-transformer-distributed

Computational graph: step 2 (forward)

We run a forward step using the input x; = 5, x, = 2 and yy4rger = 12.

@ Value=0.8888
12

Grad=0

Vpreda = XaW1 +X,w, + b ‘

5 4.444

()

5.249

()

0.719 45.5664

I _ 2
Yprea =21t 23 + b l= (}'pred - ytarget)

@ Value=0.0863

Grad=0
@ Value=0.3596
Grad=0

Umar Jamil - https://github.com/hkproj/pytorch-transformer-distributed

https://github.com/hkproj/pytorch-transformer-distributed

Computational graph: step 2 (loss.backward)

Value=0.8888
12
Grad=-67.5029

Vpreda = XaW1 +X,w, + b ‘

5 4.444
5.249
2
Yprea =21t 23 + b l= (}'pred - ytarget)
2

0.719 45.5664

@ Value=0.0863

Grad=-13.5006

@ Value=0.3596
Grad=-27.0012

Umar Jamil - https://github.com/hkproj/pytorch-transformer-distributed

https://github.com/hkproj/pytorch-transformer-distributed

Computational graph: step 2 (optimizer.step)

Value=0.8888 - a(-67.5029) = 0.9563 12
Grad=-67.5029

Vpreda = XaW1 +X,w, + b ‘

5 4.444
5.249

2
Yprea =21t 23 + b l= (}'pred - ytarget)

0.719 45.5664

@ Value=0.0863 - a(-13.5006) = 0.0998
Grad=-13.5006

@ Value=0.3596 - a(-27.0012) = 0.3866
Grad=-27.0012

Umar Jamil - https://github.com/hkproj/pytorch-transformer-distributed

https://github.com/hkproj/pytorch-transformer-distributed

Computational graph: step 2 (optimizer.zero)

@ Value=0.9563
12

Grad=0

Vpreda = XaW1 +X,w, + b ‘

5 4.444
5.249
red
2
0.719 45.5664

@ Value=0.0998

Grad=0

@ Value=0.3866
Grad=0

Umar Jamil - https://github.com/hkproj/pytorch-transformer-distributed

https://github.com/hkproj/pytorch-transformer-distributed

Gradient descent (without accumulation)

Initial weights

Data Item 1 (forward)

Data Item 1 (loss.backward)
Data Item 1 (optimizer.step)
Data Item 1 (optimizer.zero)
Data Item 2 (forward)

Data Item 2 (loss.backward)

Data Item 2 (optimizer.step)

100 Data ltem 2 (optimizer.zero)

-50 , . = 0
~100 100 "

Without gradient accumulation, at every step (every data item), we update the parameters of
the model.

Umar Jamil - https://github.com/hkproj/pytorch-transformer-distributed

https://github.com/hkproj/pytorch-transformer-distributed

PyTorch’s training loop (with accumulation)

def train_accumulate(params: ModelParameters, num_epochs: int = 1@, learning_rate: float = le-3, batch_size: int = 2):
for epoch in range(1l, num_epochs+1):
for index, ((x1, x2), y_target) in enumerate(training_data):
z1 = x1 * params.wl
z2 = x2 * params.w2
y_pred = z1 + z2 + params.b
loss = (y_pred - y_target) ** 2

loss.backward()

if (index + 1) % batch_size == or index == len(training_data) - 1:
with torch.no_grad():

params.wl -= learning_rate * params.wl.grad
params.w2 -= learning_rate * params.w2.grad
params.b -= learning_rate * params.b.grad

params.wl.grad.zero_()
params.w2.grad.zero_()
params.b.grad.zero_()

Umar Jamil - https://github.com/hkproj/pytorch-transformer-distributed

https://github.com/hkproj/pytorch-transformer-distributed

Computational graph: step 1 (forward)

We run a forward step using the input x; = 6, x, = 2 and y;4rger = 15.

@ Value=0.773
15

Grad=0

Vpreda = XaW1 +X,w, + b ‘

6 4.638

()

5.347

()

0.642 93.180

I _ 2
Yprea =21t 23 + b l= (}'pred - ytarget)

@ Value=0.067

Grad=0
@ Value=0.321
Grad=0

Umar Jamil - https://github.com/hkproj/pytorch-transformer-distributed

https://github.com/hkproj/pytorch-transformer-distributed

Computational graph: step 1 (loss.backward)

@ Value=0.773
15

Grad=-115.836

Vpreda = XaW1 +X,w, + b ‘

6 4.638

()

5.347

()

I _ 2
Yprea =21t 23 + b l= (}'pred - ytarget)

0.642 93.180

@ Value=0.067

Grad=-19.306
@ Value=0.321
Grad=-38.612

Umar Jamil - https://github.com/hkproj/pytorch-transformer-distributed

https://github.com/hkproj/pytorch-transformer-distributed

Computational graph: step 2 (forward)

We run a forward step using the input x; = 5, x, = 2 and yy4rger = 12.

@ Value=0.773

Grad=-115.836

Vpreda = XaW1 +X,w, + b

5 3.8650

()

2 ‘

4.5740

Ypreda = Z1 t 22 +b

()

0.6420
Note that during this forward
step the gradient is not zero, @ Value=0.067
because we didn’t zero it using Grad=-19.306
optimizer.zero @ Value=0.321
Grad=-38.612

12

2

I= (}'pred - ytarget)

55.1455

Umar Jamil - https://github.com/hkproj/pytorch-transformer-distributed

https://github.com/hkproj/pytorch-transformer-distributed

Computational graph: step 2 (loss.backward)

@ Value=0.773
12

—_ Grad=-115.836 +(-74.2600) = -190.096
Vpreda = XaW1 +X,w, + b ‘

5

()

2 ‘

3.8650
4.5740

Ypreda = Z1 t 22 +b

I= (}'pred - ytarget)z

()

0.6420 55.1455
The new gradientis

accumulated with the old one Value=0.067

(summed up). Now that we have Grad=-19.306 + (-14.8520) = -34.1580
reached the. b?tch size, we can @ Value=0.321

run the optimizer.step method Grad=-38.612 + (-29.704) = -68.3160

Umar Jamil - https://github.com/hkproj/pytorch-transformer-distributed

https://github.com/hkproj/pytorch-transformer-distributed

Computational graph: step 2 (optimizer.step)

Value=0.773 - a(-190.096) = 0.9631 12
Grad=-190.096

Vpreda = XaW1 +X,w, + b ‘

5 3.8650
4.5740

2
Yprea =21t 23 + b l= (}'pred - ytarget)

0.6420 55.1455

@ Value= 0.067 - a(- 34.1580) = 0.1012

Grad=-34.1580
@ Value= 0.321 - a(- 68.3160) = 0.3893
Grad=-68.3160

Umar Jamil - https://github.com/hkproj/pytorch-transformer-distributed

https://github.com/hkproj/pytorch-transformer-distributed

Computational graph: step 2 (optimizer.zero)

@ Value=0.9631
12

Grad=0

Vpreda = XaW1 +X,w, + b ‘

5 3.8650

()

4.5740

2

()

I _ 2
Yprea =21t 23 + b l= (}'pred - ytarget)

0.6420 55.1455

@ Value= 0.1012

Grad=0
@ Value=0.3893
Grad=0

Umar Jamil - https://github.com/hkproj/pytorch-transformer-distributed

https://github.com/hkproj/pytorch-transformer-distributed

Gradient descent (with accumulation)

Initial weights

Data Item 1 (forward)

Data Item 1 (loss.backward)

Data Item 2 (forward)

Data Item 2 (loss.backward)

The two gradients are summed up

Data Item 2 (optimizer.step)

Data ltem 2 (optimizer.zero)

100

=50 _
~100 100 "

With gradient accumulation, we update the parameters of the model only after we
accumulated the gradient of a batch

Umar Jamil - https://github.com/hkproj/pytorch-transformer-distributed

https://github.com/hkproj/pytorch-transformer-distributed

Outline

* Introduction to distributed training
* Whywe need it
+ Data Parallel vs Model Parallel
* Review of neural networks
* Loss function and gradient
* Gradient accumulation
+ Distributed Data Parallel training
* How it works
¢ Communication primitives
. Broadcast operator
* Reduce operator
* All-Reduce operator
* Managing failover
+ Coding session
* Infrastructure (Paperspace)
* PyTorch code
* How PyTorch handles Distributed Data Parallel training
* Bucketing

+ Computation-Communication overlap during backpropagation

Umar Jamil - https://github.com/hkproj/pytorch-transformer-distributed

https://github.com/hkproj/pytorch-transformer-distributed

In this video we will implement the
multi-server, multi-GPU case using
PyTorch and it will cover also the other
two scenarios by adjusting the
parameters.

Multi-Server, Single-GPU

Single-Server, Multi-GPU

Multi-Server, Multi-GPU

Umar Jamil - https://github.com/hkproj/pytorch-transformer-distributed

https://github.com/hkproj/pytorch-transformer-distributed

Distributed Data Parallel in detail

From now on, | will use the term “node” and "GPU" interchangeably. If a cluster is made up of 2 computers, each having 2 GPUs,
then we have 4 nodes in total.

Distributed Data Parallel works in the following way:

1.
2.
3.

At the beginning of the training, the model’s weights are initialized on one node and sent to all the other nodes (Broadcast)

Each node trains the same model (with the same initial weights) on a subset of the dataset.

Every few batches, the gradients of each node are accumulated on one node (summed up), and then sent back to all the other
nodes (All-Reduce).

Each node updates the parameters of its local model with the gradients received using its own optimizer.

Go back to step 2

i i

Umar Jamil - https://github.com/hkproj/pytorch-transformer-distributed

https://github.com/hkproj/pytorch-transformer-distributed

Distributed Data Parallel: step 1

Model weights are initialized here (e.g., randomly)

|

Illl

Eﬂz
Value=0.1

Grad=0 %y - v

Umar Jamil - https://github.com/hkproj/pytorch-transformer-distributed

https://github.com/hkproj/pytorch-transformer-distributed

Distributed Data Parallel: step 1

Initial weights are sent to all the other nodes (Broadcast)

= |

Illl _IIII_ -IIII_ _IIII-

:g: = :@: :@: = :m:
Value=0.1 Value=0.1 Value=0.1 Value=0.1
Grad=0 % - v Grad=0 Grad=0 Grad=0

Umar Jamil - https://github.com/hkproj/pytorch-transformer-distributed

https://github.com/hkproj/pytorch-transformer-distributed

Distributed Data Parallel: step 2

Each node runs a forward and backward step on one or more batch of data.
This will result in a local gradient.

The local gradient may be the accumulation of one or more batches.

Value=0.1
Grad=0.8

Value=0.1
Grad=-0.2

Value=0.1
Grad=-0.7

Value=0.1
Grad=0.4

Umar Jamil - https://github.com/hkproj/pytorch-transformer-distributed

https://github.com/hkproj/pytorch-transformer-distributed

Distributed Data Parallel: step 3

The sum of all the gradients is cumulated on one node (Reduce)

Value=0.1 Value=0.1 Value=0.1 Value=0.1
Grad=0.8 \queyd Grad=-0.2 Grad=-0.7 Lumpd Grad=0.4
Grad_Sum=0.3

Umar Jamil - https://github.com/hkproj/pytorch-transformer-distributed

https://github.com/hkproj/pytorch-transformer-distributed

Distributed Data Parallel: step 3

The cumulative gradient is sent to all the other nodes (Broadcast).
The sequence of Reduce and Broadcast are implemented as a single operation (All-Reduce).

3

Value=0.1
Grad=0.3

Value=0.1
Grad=0.3

Value=0.1

Grad=0.3 (quup

Value=0.1
Grad=0.3

Umar Jamil - https://github.com/hkproj/pytorch-transformer-distributed

https://github.com/hkproj/pytorch-transformer-distributed

Distributed Data Parallel: step 4

Each node updates the parameters of its local model using the gradient received.
After the update, the gradients are reset to zero and we can start another loop.

Illl _IIII_ _Illl_ _IIII_

=IIII= = =llII= =IIII= = =IIII=
Value=0.2 Value=0.2 Value=0.2 Value=0.2
Grad=0 %y - v Grad=0 Grad=0 - v Grad=0

Umar Jamil - https://github.com/hkproj/pytorch-transformer-distributed

https://github.com/hkproj/pytorch-transformer-distributed

Collective Communication Primitives

In distributed computing environments, a node may need to communicate with other nodes. If the communication pattern is similar
to a client and a server, then we talk about point-to-point communication, because one client connects to one server in a request-
response chain of events.

However, there are cases in which one node needs to communicate to multiple receivers at once: this is the typical case of data
parallel training in deep learning: one node needs to send the initial weights to all the other nodes. Moreover, all the other nodes,
need to send their gradients to one single node and receive back the cumulative gradient. Collective communication allows to
model the communication pattern between groups of nodes.

Let’s visualize the difference between the two modes of communication.

Umar Jamil - https://github.com/hkproj/pytorch-transformer-distributed

https://github.com/hkproj/pytorch-transformer-distributed

Point-To-Point

Imagine you need to send a file to 7 friends. With point-to-point communication, you'd send the file iteratively to each of the friend
one by one. Suppose the internet speed is 1 MB/s and the file is 5 MB in size.

Total time: 5s

Umar Jamil - https://github.com/hkproj/pytorch-transformer-distributed

https://github.com/hkproj/pytorch-transformer-distributed

Point-To-Point

Since the internet communication is 1 MB/s and the file is 5 MB in size, your connection would be split among the 7 friends (each
friend would be receiving the file at ~ 143 KB/s). The total time is still 35s.

Total time: 35s

Let’s see how collective communication would manage this!

Umar Jamil - https://github.com/hkproj/pytorch-transformer-distributed

https://github.com/hkproj/pytorch-transformer-distributed

Collective Communication: Broadcast

The operation of sending a data to all the other nodes is known as the Broadcast operator. Collective Communication libraries (e.g.

NCCL) assign a unique ID to each node, known as RANK. Suppose we want to send 5 MB with an internet speed of 1 MB/s.

RANK O

RANK 1

RANK 2

RANK 3

RANK 4

Total time: 5s

RANK 5

RANK 6

Umar Jamil - https://github.com/hkproj/pytorch-transformer-distributed

RANK 7

https://github.com/hkproj/pytorch-transformer-distributed

Collective Communication: Broadcast

The operation of sending a data to all the other nodes is known as the Broadcast operator. Collective Communication libraries (e.g.
NCCL) assign a unique ID to each node, known as RANK. Suppose we want to send 5 MB with an interned speed of 1 MB/s.

= -llll- = _||||_ = -llll- = _llll_ = -llll- = _llll_ = -llll- = _||||_
=||||= =||||= =||||= =||||: =||||= =||||= =||||= =||||=
LJ L] LJ v LJ v H LJ L]
RANK 0 RANK 1 RANK 2 RANK 3 RANK 4 RANK 5 RANK 6 RANK 7

Total time: 10s

Umar Jamil - https://github.com/hkproj/pytorch-transformer-distributed

https://github.com/hkproj/pytorch-transformer-distributed

Collective Communication: Broadcast

The operation of sending a data to all the other nodes is known as the Broadcast operator. Collective Communication libraries (e.g.
NCCL) assign a unique ID to each node, known as RANK. Suppose we want to send 5 MB with an interned speed of 1 MB/s.

= -llll- -llll- = -llll- = -llll- = -llll- = -llll- = -llll- = -""-
=||||= =||||= =||||= =||||= =||||= =||||= =||||= =||||=
r— r—r
RANK 0 RANK 1 RANK 2 RANK 3 RANK 4 RANK 5 RANK 6 RANK 7

Total time: 15s

This approach is known as Divide-and-Conquer. With collective communication, we exploit
the interconnectivity between nodes to avoid idle times and reduce the total communication
time.

Umar Jamil - https://github.com/hkproj/pytorch-transformer-distributed

https://github.com/hkproj/pytorch-transformer-distributed

Reduce operation

The Broadcast operator is used to send the initial weights to all the other nodes when we start the training loop.

At every few batches of data processed by each node, the gradients of all nodes need to be sent to one node and accumulated
(summed up). This operation is known as Reduce.

Let’s visualize how it works.

Umar Jamil - https://github.com/hkproj/pytorch-transformer-distributed

https://github.com/hkproj/pytorch-transformer-distributed

Collective Communication: Reduce

Initially, each node has its own gradient.

= _IIII_ = _IIII_ = _IIII_ = _IIII_ = _IIII_ = _IIII_ = _IIII_ = _IIII_
=IIII= =IIII= =IIII= =IIII: =IIII= =IIII= =IIII: =IIII=
RANK 0 RANK 1 RANK 2 RANK 3 RANK 4 RANK 5 RANK 6 RANK 7
Grad=0.1 Grad=-0.2 Grad=-0.3 Grad=0.5 Grad=-0.6 Grad=-0.1 Grad=0.2 Grad=0.3

Umar Jamil - https://github.com/hkproj/pytorch-transformer-distributed

https://github.com/hkproj/pytorch-transformer-distributed

Collective Communication: Reduce

Each node sends the gradient to its adjacent node, who will sum it with its own gradient.

= _IIII_ = _IIII_ = _IIII_ = _IIII_ = _IIII_ = _IIII_ = _IIII_ = _IIII_
=IIII= =IIII= =IIII= =IIII: =IIII= =IIII= =I|Il: =IIII=
RANK 0 RANK 1 RANK 2 RANK 3 RANK 4 RANK 5 RANK 6 RANK 7
Grad=0.1 Grad=-0.2 Grad=-0.3 Grad=0.5 Grad=-0.6 Grad=-0.1 Grad=0.2 Grad=0.3
Grad_Sum=-0.1 Grad_Sum=0.2 Grad_Sum=-0.7 Grad_Sum=0.5
Step=1

Umar Jamil - https://github.com/hkproj/pytorch-transformer-distributed

https://github.com/hkproj/pytorch-transformer-distributed

Collective

RANK 0
Grad=0.1
Grad_Sum=0.1

Communication: Reduce

RANK 1

Grad=-0.2

RANK 2

Grad=-0.3

= - 1" _ = _ 111}
= u = = nm
RANK 3 RANK 4
Grad=0.5 Grad=-0.6

Grad_Sum=-0.2

Step=2

RANK 5
Grad=-0.1

RANK 6
Grad=0.2

RANK 7

Grad=0.3

Umar Jamil - https://github.com/hkproj/pytorch-transformer-distributed

https://github.com/hkproj/pytorch-transformer-distributed

Collective Communication: Reduce

= _IIII_ = _IIII_ = _IIII_ = _IIII_ = _IIII_ = _IIII_ = _IIII_ = _IIII_
=IIII= =IIII= =IllI= =IIII: =IIII= =IIII= =IIII: =IIII=
LJ L J LJ L J LJ L J LJ L J LJ L J LJ L J LJ L J L J LJ
RANK 0 RANK 1 RANK 2 RANK 3 RANK 4 RANK 5 RANK 6 RANK 7
Grad=0.1 Grad=-0.2 Grad=-0.3 Grad=0.5 Grad=-0.6 Grad=-0.1 Grad=0.2 Grad=0.3

Grad_Sum=-0.1
Step=3

With only 3 steps we accumulated the gradient of all nodes into one node. It can be proven
that the communication time is logarithmic w.r.t the number of nodes.

Umar Jamil - https://github.com/hkproj/pytorch-transformer-distributed

https://github.com/hkproj/pytorch-transformer-distributed

Collective Communication: All-Reduce

Having accumulated the gradients of all the nodes into a single node, we need to send the cumulative gradient to all the nodes.
This operation can be done using a Broadcast operator.

The sequence of Reduce-Broadcast is implemented by another operator known as All-Reduce, whose runtime is generally lower
than the sequence of Reduce followed by a Broadcast.

| will not show the algorithm behind All-Reduce, but you can think of it as a sequence of Reduce followed by a Broadcast
operation.

Umar Jamil - https://github.com/hkproj/pytorch-transformer-distributed

https://github.com/hkproj/pytorch-transformer-distributed

Failover: what happens if one node crashes?

Imagine you're training in a distributed scenario like the one shown below and one of the nodes suddenly crashes. In these case, 2
GPUs out of 4 become unreachable. How should the system react?

One way, would be to restart the entire cluster and that's easy. However, by restarting the cluster, the training would restart from
zero, and we would lose all the parameters and computation done so far. A better approach is to use checkpointing.

Checkpointing means saving the weights of the model on a shared disk every few iterations (for example every epoch) and
resume the training from the last checkpoint in case there’s a crash.

Umar Jamil - https://github.com/hkproj/pytorch-transformer-distributed

https://github.com/hkproj/pytorch-transformer-distributed

Failover: using checkpointing

Model weights are initialized here (using the latest checkpoint)

111} 111} 111} "
Eorv Bl N E o5 Eoro Sl ol EoS
n -— u m -— n
Value=0.1
Grad=0 g - v -

We need a shared storage because PyTorch will decide
which node will initialize the weights and we should make

no assumption on which one will it be. So, every node Shared Storage
should have access to the shared storage. Plus, it is good :
rule in distributed systems to not have one node more (Checkpomts)

important than others, because every node can fail at any
time.

Umar Jamil - https://github.com/hkproj/pytorch-transformer-distributed

https://github.com/hkproj/pytorch-transformer-distributed

Failover: who should save the checkpoint?

When we start the cluster, PyTorch will assign a unique ID (RANK) to each GPU. We will write our code in such a way that whichever
node is assigned the RANK 0 will be responsible for saving the checkpoint, so that the other nodes do not overwrite each other’s
files. So only one node will be responsible for writing the checkpoints and all the other files we need for training.

RANK O RANK 1 RANK 2 RANK 3
IIII _IIII_ -IIII_ _Illl_
Eor Bl ol Ec S EcrEl Kl Ec S
[-— m un -— m
Value=0.1
Grad=0 - -

Shared Storage
(Checkpoints)

Umar Jamil - https://github.com/hkproj/pytorch-transformer-distributed

https://github.com/hkproj/pytorch-transformer-distributed

LOCAL_RANK vs RANK

The environment variable LOCAL_RANK indicates the ID of the GPU on the local computer, while the RANK variable indicates the
a globally unique ID among all the nodes in the cluster.

Please note that ranks are not stable, meaning that if you restart the entire cluster, a different node may be assigned the

rank number 0.

n T n i T n
LOCAL_RANK 0 1 0 1
RANK 0 1 2 3

Used to save checkpoint and/or initialize services (like W&B)

Umar Jamil - https://github.com/hkproj/pytorch-transformer-distributed

https://github.com/hkproj/pytorch-transformer-distributed

How to integrate DistributedDataParallel into your project?

£ train():
if global_rank ==
initialize_services()

data_loader = Dataloader(train_dataset, shuffle=False, sampler=DistributedSampler(train_dataset, shuffle=True))
model = MyModel()
if os.path.exists('latest_checkpoint.pth'):

model.load_state_dict(torch.load('latest_checkpoint.pth'))

model = DistributedDataParallel(model, device_ids=[local_rank])
optimizer = torch.optim.Adam(model.parameters(), lr=10e-4, eps=le-9)
loss_fn = torch.nn.CrossEntropyLoss()

for in range(num_epochs):
for data, labels in data_loader:
loss = loss_fn(model(data), labels)
loss.backward()
optimizer.step()
optimizer.zero_grad()

if global_rank ==
collect_statistics()

if global_rank

torch.save(model.state_dict(), 'latest_checkpoint.pth')

if __name__ == '__main__':
local_rank = int(os.environ['LOCA
global_rank = int(os.environ['RANK

init_process_group(backend="nccl")
torch.cuda.set_device(local_rank)

train()

destroy_process_group()

Umar Jamil - https://github.com/hkproj/pytorch-transformer-distributed

https://github.com/hkproj/pytorch-transformer-distributed

Outline Prerequisites

« Introduction to distributed training + Basic understanding of neural networks and PyTorch

« Why we need it + (Optional) watch my previous video on how to code a Transformer model from
scratch
» Data Parallel vs Model Parallel

* Review of neural networks
* Loss function and gradient
* Gradient accumulation
+ Distributed Data Parallel training
* How it works
+ Communication primitives
. Broadcast operator
* Reduce operator
* All-Reduce operator
* Managing failover
+ Coding session
* Infrastructure (Paperspace)
* PyTorch code
* How PyTorch handles Distributed Data Parallel training
* Bucketing

+ Computation-Communication overlap during backpropagation

Umar Jamil - https://github.com/hkproj/pytorch-transformer-distributed

https://github.com/hkproj/pytorch-transformer-distributed

When does PyTorch synchronize gradients?

PyTorch will synchronize the gradients every time we call the method loss.backward. This will lead to:
1. Each node calculating its local gradients (derivative of the loss function w.r.t each node of the computational graph)
2. Each node will send its local gradient to one single node and receives back the cumulative gradient (All-Reduce)

3. Each node will update its weights using the cumulative gradient and its local optimizer.

We can avoid PyTorch synchronizing the gradient at every backward step and instead, let it accumulate the gradient for a few steps
by using the no_sync() context. Let's see how it works.

Umar Jamil - https://github.com/hkproj/pytorch-transformer-distributed

https://github.com/hkproj/pytorch-transformer-distributed

When does PyTorch synchronize gradients?

f train():
if global_rank == @:
initialize_services()

data_loader = Dataloader(train_dataset, shuffle=False, sampler=DistributedSampler(train_dataset, shuffle=True
model = MyModel()
if os.path.exists('latest_checkpoint.pth'):

model.load_state_dict(torch.load('latest_checkpoint.pth'))

model = DistributedDataParallel(model, device_id local_rank])
optimizer = torch.optim.Adam(model.parameters(), lr=10e-4, eps=le-9)
loss_fn = torch.nn.CrossEntropyLoss()

for 1 in range(num_epochs):
data. labels in data loader:
if (step_number + 1) % 100 != @ and not last_step:
with model.no_sync():
loss = loss_fn(model(data), labels)
loss.backward()

loss = loss_fn(model(data), labels)
loss.backward()

optimizer.step()
optimizer.zero_grad()

if global_rank ==
collect_statistics()

if global_rank ==

torch.save(model.state_dict(), 'latest_checkpoint.pth')

__name__ main__':
local_rank nt(
global_rank = int(os.environl[’

init_process_group(backend="nccl"')
torch.cuda.set_device(local_rank)

train()

destroy_process_group()

Umar Jamil - https://github.com/hkproj/pytorch-transformer-distributed

https://github.com/hkproj/pytorch-transformer-distributed

PyTorch tricks: Computation-Communication overlap

Since each GPU needs to send its gradient to a central node for accumulation, this can lead to an idle time in which the GPUs are
not working, but only communicating with each other. PyTorch handles this communication delay in a smart way. Let's see how it

works.

Update weights

Communication

(All-Reduce)

Update weights

Communication

Computation-Communication overlap
(All-Reduce)

Backward — Backward

Forward

Forward

Umar Jamil - https://github.com/hkproj/pytorch-transformer-distributed

https://github.com/hkproj/pytorch-transformer-distributed

Computation-Communication overlap: details

Umar Jamil - https://github.com/hkproj/pytorch-transformer-distributed

https://github.com/hkproj/pytorch-transformer-distributed

Computation-Communication overlap: details

All-Reduce

Umar Jamil - https://github.com/hkproj/pytorch-transformer-distributed

https://github.com/hkproj/pytorch-transformer-distributed

Computation-Communication overlap: bucketing

Instead of sending each gradient one by one, which would result in a large communication overhead, gradients are packed
together into buckets of equal size. PyTorch recommends 25MB as the size of the bucket.

Bucket 3 Bucket 2 Bucket 1

Umar Jamil - https://github.com/hkproj/pytorch-transformer-distributed

https://github.com/hkproj/pytorch-transformer-distributed

Parallelism Fundamentals
CS 229S Fall 2023

Today's Lecture

Data parallelism

Model Parallelism

Pipeline Parallelism

Practical challenges and solution for deploying parallelism in the real world

Model performance improves from all forms of scale

4.2
—— L=(D/5.4-103)700% | 5.6 —— L=(N/8.8-1013)-0.076
3.9
4.8
2" a6
- 4.0
S
g 3.3 39
F 3
3.0
2.4
L=(Cnf2.3 + 108)~%950
2 . v . . 2.7 , . - - -
10%¢ 10~7 107 10 10*+ 10 108 109 10° 107 109
Compute Dataset Size Parameters
PF-days, non-embedding tokens non-embedding

LLM performance improves from scaling up the total compute time, the dataset size,
and the model size

Scaling Laws for Neural Language Models. Kaplan, et al. https://arxiv.org/pdf/2001.08361.pdf

LLMs exhibit emergent properties at scale

Zero-shot One-shot Few-shot

Natural Language
Prompt

\

175B Params

60

50

Accuracy (%)

13B Params

- 1.3B Params

Number of Examples in Context