

























































































Training Optimization
Data Parallelism

DataParallel Singleprocess multi threaded approach thatworks whenthemodel fitson
a singleGPU EachGPUkeeps a copyofthemodel processes different microbatches

then averages gradients across GPUs

Main Bottleneck Rely on singleprocess multithread communication inefficient interGPUcommunican

andpotential slowdown due to GPU overhead

The biggest problemof single process multithread Gtt contention

Synchronization Approaches Attheendofeachminibatch workersneed to syncgradients weights toavoidstaleness
Two synch approaches

9Bulk Synch Parallel BSP
Def workers synch at theendof everyminibatch
V prevents model weights staleness provides goodlearning efficiency

X Each machine needtohaltandwaitforothers tosend gradients
2 Asynch Parallel ASP

Each workerprocessesthedata asych with nowaiting or stalling
X Easily staleweights beingusedthus lower thestatistical leamy

efficiency computation time but notspeeduptrainingtime to
Fakehardwork converage

How to solve

DDP Distributed Data Parallel EachGPU worker hasits own process andcan work onmultiple
nodesmachines Use Ring All Reduce algo toavoid central bottlen
DDPhaslower computera hadthanDataparallel

ZERO Dero Redundancy optimizer Not onlymodel parameters and gradients but also theoptimizer
Splitstoragenotsplitcomputation stateIAdammomentum Variance alsotakes a lotof memory
parallelstorage not parallel computation Its has 3 main optimization stages

i iii iTii iihi ii.fiGradients combinedwithZero1
ZERO3 Model Parameters maxmemorybutincreasecomple

Summary ZEROpartitions optimizerstates gradients model parameters across differentGPUs
achieve nearlinear memory savingswhile keepingthecomputationlogicunchanged




























































































Communication Primitives Arethebuilding blocksfor distributed training andused to synch parameters

gradients optimizerstates efficiently acrossmultipleGPUs or nodes

AllReduce Synch gradients

Everyrank starts with its own tensor endsupwith the reduction summeanmaxi
across all ranks
Mement

AllReduce Reducescattercomputetheglobalsumshared AllGatherreconstructthefullSumme
tensor oneveryrank

99 ftp99
callreduceopsummsumigogivis ateveryrank

Rink
N1 9N1

RingAllReduce Topology ranksfroma ringeachstep everyranksendstoits rightneighbor andreceives fromits left

Mphsigneddth
bottleneck fullyuse homogeneouslipsNutinks large butslowiftoomanys

1 ReduceScatter reducepartial chunks while circulating

2 AllGather circulate reduced chunks soeveryone gets thecomplete results

Communication Overhead with tensor size Xbytesand N ranks
Each ranksendsreceives N11 messages perphase
Eachmessage is bytes

perranktraffic 2XN1 bytes

Reduce Scatter reduced across ranks onlykeep your shared

used as the 1ˢᵗstep in optimized allreduce

egEachrankhas chunko 1chunk1 1 I chunkN11
After reducescatter SUM
Rank0 keeps reduced chunko

R.a.nl1 keeps reduced chunk

AllGather Eachrank starts withitsown shard everyoneendswiththe full concatenated tensor

Gfored
the 2ⁿᵈstep in optimised allreduced

Rank0 chunk0
Rank1 chunk1

After
allranks Ichunko 1 chunkit chunkN13

Broadcast One processsends datatoall others

egdistributing modelweights at init
Reduce Datafrom allprocess isreducedlegSum andtheresults issent tosingle process

egAllranks SUMI ranko hastheresult
P'snotforsynchgradientsifneedresultsonall ranks useallreducedScatter Oneprocess splits data and sends different chunksto eachprocess




























































































egRank0 Chunko1chunks 1 Ichunknit
Rank1 gets chunk0
Ranka gets chunk1

It'ssuitable fordistributing nonoverlapping minibatch or work assignments presharedbythe rank0 root
Gather Eachprocess sendsdatato a singleprocess which collets allthedata

egAllranks rank0 collects chunko chunks chunkN12

Reference

Megatron mL Zero Deepspeed1MixedPrecision
StanfordCS224N Lecture12 Efficient Training
Stanford152295 Lectureof Parallelism lecture
Distributed Trainingwith PyTouch complete tutorial withcloudinfra code
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Outline
• Introduction to distributed training

• Why we need it

• Data Parallel vs Model Parallel

• Review of neural networks

• Loss function and gradient

• Gradient accumulation

• Distributed Data Parallel training

• How it works

• Communication primitives

• Broadcast operator

• Reduce operator

• All-Reduce operator

• Managing failover

• Coding session

• Infrastructure (Paperspace)

• PyTorch code

• How PyTorch handles Distributed Data Parallel training

• Bucketing

• Computation-Communication overlap during backpropagation

https://github.com/hkproj/pytorch-transformer-distributed
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What is distributed training?
Imagine you want to train a Language Model on a very big dataset, for example the entire content of Wikipedia. The dataset is 
quite big, because it is made up of millions of articles, each of them with thousands of tokens. To train this model on a single GPU 
may be possible, but it poses some challenges:

1. The model may not fit on a single GPU: this happens when the model has many parameters.

2. You are forced to use a small batch size because a bigger batch size leads to an Out Of Memory error on CUDA.

3. The model may take years to train because the dataset is huge.

If any of the above applies to you, then you need to scale your training setup. Scaling can be done vertically, or horizontally. Let’s 
compare these two options.

https://github.com/hkproj/pytorch-transformer-distributed
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Vertical scaling Horizontal scaling

1x Server
8GB RAM
4GB GPU Memory

1x Server
64GB RAM
32GB GPU Memory

1x Server
8GB RAM
4GB GPU Memory

4x Servers
8GB RAM
4GB GPU Memory (x2)

No code change Minimal code change (thanks to PyTorch)

In this video we will explore horizontal scaling

money is all youneed Strategy is all youneed

https://github.com/hkproj/pytorch-transformer-distributed
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Data Parallelism vs Model Parallelism
If the model can fit within a single GPU, then we can distribute the training on multiple servers (each containing one or multiple 
GPUs), with each GPU processing a subset of the entire dataset in parallel and synchronizing the gradients during 
backpropagation. This option is known as Data Parallelism.

In this video, we will focus on Data Parallelism.

If the model cannot fit within a single GPU, then we need to “break” the model into smaller layers and let each GPU process a part 
of the forward/backward step during gradient descent. This option is known as Model Parallelism.
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Outline
• Introduction to distributed training

• Why we need it

• Data Parallel vs Model Parallel

• Review of neural networks

• Loss function and gradient

• Gradient accumulation

• Distributed Data Parallel training

• How it works

• Communication primitives

• Broadcast operator

• Reduce operator

• All-Reduce operator

• Managing failover

• Coding session

• Infrastructure (Paperspace)

• PyTorch code

• How PyTorch handles Distributed Data Parallel training

• Bucketing

• Computation-Communication overlap during backpropagation
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A review of neural networks: a practical example
Imagine you want to train a neural network to predict the price (𝑦𝑝𝑟𝑒𝑑) of a house given two variables: the number of bedrooms in 
the house (𝑥1) and the number of bathrooms in the house (𝑥2). We think that the relationship between the output and the input 
variables is linear.

𝑦𝑝𝑟𝑒𝑑 = 𝑥1𝑤1 + 𝑥2𝑤2 + 𝑏

Our goal is to use stochastic gradient descent to find the values of the parameters 𝑤1, 𝑤2 and 𝑏 such that the MSE loss between the 
actual house price (𝑦𝑡𝑎𝑟𝑔𝑒𝑡) and the predicted (𝑦𝑝𝑟𝑒𝑑) is minimized. 

𝐚𝐫𝐠𝐦𝐢𝐧
𝑤1,𝑤2,𝑏

𝑦𝑝𝑟𝑒𝑑 − 𝑦𝑡𝑎𝑟𝑔𝑒𝑡
2

https://github.com/hkproj/pytorch-transformer-distributed
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PyTorch’s training loop (without accumulation)

https://github.com/hkproj/pytorch-transformer-distributed
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Computation graph

𝑥1 𝑧1 = 𝑥1𝑤1

𝑥2 𝑧2 = 𝑥2𝑤2

𝑦𝑝𝑟𝑒𝑑 = 𝑧1 + 𝑧2 + b

𝑏

𝑙 = 𝑦𝑝𝑟𝑒𝑑 − 𝑦𝑡𝑎𝑟𝑔𝑒𝑡
2

𝑦𝑡𝑎𝑟𝑔𝑒𝑡

𝑤1

𝑤2

PyTorch will convert our neural network into a computational graph.

𝑦𝑝𝑟𝑒𝑑 = 𝑥1𝑤1 + 𝑥2𝑤2 + 𝑏

Let’s visualize the training process one item 
at a time using our computation graph.

https://github.com/hkproj/pytorch-transformer-distributed
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Computational graph: step 1 (forward)

𝑥1 𝑧1 = 𝑥1𝑤1

𝑥2 𝑧2 = 𝑥2𝑤2

𝑦𝑝𝑟𝑒𝑑 = 𝑧1 + 𝑧2 + b

𝑏

𝑙 = 𝑦𝑝𝑟𝑒𝑑 − 𝑦𝑡𝑎𝑟𝑔𝑒𝑡
2

𝑦𝑡𝑎𝑟𝑔𝑒𝑡

𝑤1

𝑤2

𝑦𝑝𝑟𝑒𝑑 = 𝑥1𝑤1 + 𝑥2𝑤2 + 𝑏

We run a forward step using the input 𝑥1 = 6, 𝑥2 = 2 and 𝑦𝑡𝑎𝑟𝑔𝑒𝑡 = 15.

We initialize the weights as follows
Value=0.773

Value=0.067

Value=0.321

6

2

4.638

0.642

5.347

15

93.180

Now we call the loss.backward() method to 
calculate the gradient of the loss function 
w.r.t to each parameter. PyTorch will also 
compute the gradient for the intermediate 
nodes, but I will not show them here for 
simplicity.

Grad=0

Grad=0

Grad=0

https://github.com/hkproj/pytorch-transformer-distributed
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Computational graph: step 1 (loss.backward)

𝑥1 𝑧1 = 𝑥1𝑤1

𝑥2 𝑧2 = 𝑥2𝑤2

𝑦𝑝𝑟𝑒𝑑 = 𝑧1 + 𝑧2 + b

𝑏

𝑙 = 𝑦𝑝𝑟𝑒𝑑 − 𝑦𝑡𝑎𝑟𝑔𝑒𝑡
2

𝑦𝑡𝑎𝑟𝑔𝑒𝑡

𝑤1

𝑤2

𝑦𝑝𝑟𝑒𝑑 = 𝑥1𝑤1 + 𝑥2𝑤2 + 𝑏
Value=0.773

Value=0.067

Value=0.321

6

2

4.638

0.642

5.347

15

93.180

Grad=-115.836

Grad=-38.612

Grad=-19.306

𝑑𝑙
𝑑𝑦𝑝𝑟𝑒𝑑

= 2𝑦𝑝𝑟𝑒𝑑 − 2𝑦𝑡𝑎𝑟𝑔𝑒𝑡 = −19.306

𝑑𝑙
𝑑𝑧1

= 𝑑𝑙
𝑑𝑦𝑝𝑟𝑒𝑑

× 𝑑𝑦𝑝𝑟𝑒𝑑

𝑑𝑧1
= −19.306 

𝑑𝑦𝑝𝑟𝑒𝑑

𝑑𝑧1
= 1

𝑑𝑙
𝑑𝑤1

= 𝑑𝑙
𝑑𝑦𝑝𝑟𝑒𝑑

× 𝑑𝑦𝑝𝑟𝑒𝑑

𝑑𝑧1
× 𝑑𝑧1

𝑑𝑤1
= −115.836  

𝑑𝑧1

𝑑𝑤1
= 𝑥1 = 6

https://github.com/hkproj/pytorch-transformer-distributed
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Computational graph: step 1 (optimizer.step)

𝑥1 𝑧1 = 𝑥1𝑤1

𝑥2 𝑧2 = 𝑥2𝑤2

𝑦𝑝𝑟𝑒𝑑 = 𝑧1 + 𝑧2 + b

𝑏

𝑙 = 𝑦𝑝𝑟𝑒𝑑 − 𝑦𝑡𝑎𝑟𝑔𝑒𝑡
2

𝑦𝑡𝑎𝑟𝑔𝑒𝑡

𝑤1

𝑤2

𝑦𝑝𝑟𝑒𝑑 = 𝑥1𝑤1 + 𝑥2𝑤2 + 𝑏

Suppose the learning rate is 𝜶 =  𝟏𝟎−𝟑. Each parameter is updated as follows:

Value=0.773 - 𝜶 −115.836 = 𝟎. 𝟖𝟖𝟖𝟖

Value=0.067 - 𝜶(-19.306) = 0.0863

Value=0.321 - 𝜶(-38.612) = 0.3596

6

2

4.638

0.642

5.347

15

93.180

Grad=-115.836

Grad=-38.612

Grad=-19.306

𝒑𝒂𝒓𝒂𝒎𝒏𝒆𝒘 = 𝒑𝒂𝒓𝒂𝒎𝒐𝒍𝒅 − 𝜶 × 𝒈𝒓𝒂𝒅

https://github.com/hkproj/pytorch-transformer-distributed
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Computational graph: step 1 (optimizer.zero)

𝑥1 𝑧1 = 𝑥1𝑤1

𝑥2 𝑧2 = 𝑥2𝑤2

𝑦𝑝𝑟𝑒𝑑 = 𝑧1 + 𝑧2 + b

𝑏

𝑙 = 𝑦𝑝𝑟𝑒𝑑 − 𝑦𝑡𝑎𝑟𝑔𝑒𝑡
2

𝑦𝑡𝑎𝑟𝑔𝑒𝑡

𝑤1

𝑤2

𝑦𝑝𝑟𝑒𝑑 = 𝑥1𝑤1 + 𝑥2𝑤2 + 𝑏

We reset the gradient of all the parameters to zero.

Value=𝟎. 𝟖𝟖𝟖𝟖

Value=0.0863

Value=0.3596

6

2

4.638

0.642

5.347

15

93.180

Grad=0

Grad=0

Grad=0

https://github.com/hkproj/pytorch-transformer-distributed
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Computational graph: step 2 (forward)

𝑥1 𝑧1 = 𝑥1𝑤1

𝑥2 𝑧2 = 𝑥2𝑤2

𝑦𝑝𝑟𝑒𝑑 = 𝑧1 + 𝑧2 + b

𝑏

𝑙 = 𝑦𝑝𝑟𝑒𝑑 − 𝑦𝑡𝑎𝑟𝑔𝑒𝑡
2

𝑦𝑡𝑎𝑟𝑔𝑒𝑡

𝑤1

𝑤2

𝑦𝑝𝑟𝑒𝑑 = 𝑥1𝑤1 + 𝑥2𝑤2 + 𝑏

We run a forward step using the input 𝑥1 = 5, 𝑥2 = 2 and 𝑦𝑡𝑎𝑟𝑔𝑒𝑡 = 12.

Value=𝟎. 𝟖𝟖𝟖𝟖

Value=0.0863

Value=0.3596

5

2

4.444

0.719

5.249

12

45.5664

Grad=0

Grad=0

Grad=0

https://github.com/hkproj/pytorch-transformer-distributed
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Computational graph: step 2 (loss.backward)

𝑥1 𝑧1 = 𝑥1𝑤1

𝑥2 𝑧2 = 𝑥2𝑤2

𝑦𝑝𝑟𝑒𝑑 = 𝑧1 + 𝑧2 + b

𝑏

𝑙 = 𝑦𝑝𝑟𝑒𝑑 − 𝑦𝑡𝑎𝑟𝑔𝑒𝑡
2

𝑦𝑡𝑎𝑟𝑔𝑒𝑡

𝑤1

𝑤2

𝑦𝑝𝑟𝑒𝑑 = 𝑥1𝑤1 + 𝑥2𝑤2 + 𝑏
Value=𝟎. 𝟖𝟖𝟖𝟖

Value=0.0863

Value=0.3596

5

2

4.444

0.719

5.249

12

45.5664

Grad=-67.5029

Grad=-27.0012

Grad=-13.5006

https://github.com/hkproj/pytorch-transformer-distributed
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Computational graph: step 2 (optimizer.step)

𝑥1 𝑧1 = 𝑥1𝑤1

𝑥2 𝑧2 = 𝑥2𝑤2

𝑦𝑝𝑟𝑒𝑑 = 𝑧1 + 𝑧2 + b

𝑏

𝑙 = 𝑦𝑝𝑟𝑒𝑑 − 𝑦𝑡𝑎𝑟𝑔𝑒𝑡
2

𝑦𝑡𝑎𝑟𝑔𝑒𝑡

𝑤1

𝑤2

𝑦𝑝𝑟𝑒𝑑 = 𝑥1𝑤1 + 𝑥2𝑤2 + 𝑏
Value=𝟎. 𝟖𝟖𝟖𝟖 - 𝜶(-67.5029) = 0.9563

Value=0.0863 - 𝜶(-13.5006) = 0.0998

Value=0.3596 - 𝜶(-27.0012) = 0.3866

5

2

4.444

0.719

5.249

12

45.5664

Grad=-67.5029

Grad=-27.0012

Grad=-13.5006

https://github.com/hkproj/pytorch-transformer-distributed
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Computational graph: step 2 (optimizer.zero)

𝑥1 𝑧1 = 𝑥1𝑤1

𝑥2 𝑧2 = 𝑥2𝑤2

𝑦𝑝𝑟𝑒𝑑 = 𝑧1 + 𝑧2 + b

𝑏

𝑙 = 𝑦𝑝𝑟𝑒𝑑 − 𝑦𝑡𝑎𝑟𝑔𝑒𝑡
2

𝑦𝑡𝑎𝑟𝑔𝑒𝑡

𝑤1

𝑤2

𝑦𝑝𝑟𝑒𝑑 = 𝑥1𝑤1 + 𝑥2𝑤2 + 𝑏
Value=0.9563

Value=0.0998

Value=0.3866

5

2

4.444

0.719

5.249

12

45.5664

Grad=0

Grad=0

Grad=0

https://github.com/hkproj/pytorch-transformer-distributed
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Gradient descent (without accumulation)
Initial weights

Data Item 1 (loss.backward)

Data Item 1 (optimizer.step)

Data Item 1 (optimizer.zero)

Data Item 2 (loss.backward)

Data Item 2 (optimizer.step)

Data Item 2 (optimizer.zero)

Data Item 1 (forward)

Data Item 2 (forward)

Without gradient accumulation, at every step (every data item), we update the parameters of 
the model.

https://github.com/hkproj/pytorch-transformer-distributed
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PyTorch’s training loop (with accumulation)

https://github.com/hkproj/pytorch-transformer-distributed
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Computational graph: step 1 (forward)

𝑥1 𝑧1 = 𝑥1𝑤1

𝑥2 𝑧2 = 𝑥2𝑤2

𝑦𝑝𝑟𝑒𝑑 = 𝑧1 + 𝑧2 + b

𝑏

𝑙 = 𝑦𝑝𝑟𝑒𝑑 − 𝑦𝑡𝑎𝑟𝑔𝑒𝑡
2

𝑦𝑡𝑎𝑟𝑔𝑒𝑡

𝑤1

𝑤2

𝑦𝑝𝑟𝑒𝑑 = 𝑥1𝑤1 + 𝑥2𝑤2 + 𝑏

We run a forward step using the input 𝑥1 = 6, 𝑥2 = 2 and 𝑦𝑡𝑎𝑟𝑔𝑒𝑡 = 15.

Value=0.773

Value=0.067

Value=0.321

6

2

4.638

0.642

5.347

15

93.180

Grad=0

Grad=0

Grad=0

https://github.com/hkproj/pytorch-transformer-distributed
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Computational graph: step 1 (loss.backward)

𝑥1 𝑧1 = 𝑥1𝑤1

𝑥2 𝑧2 = 𝑥2𝑤2

𝑦𝑝𝑟𝑒𝑑 = 𝑧1 + 𝑧2 + b

𝑏

𝑙 = 𝑦𝑝𝑟𝑒𝑑 − 𝑦𝑡𝑎𝑟𝑔𝑒𝑡
2

𝑦𝑡𝑎𝑟𝑔𝑒𝑡

𝑤1

𝑤2

𝑦𝑝𝑟𝑒𝑑 = 𝑥1𝑤1 + 𝑥2𝑤2 + 𝑏
Value=0.773

Value=0.067

Value=0.321

6

2

4.638

0.642

5.347

15

93.180

Grad=-115.836

Grad=-38.612

Grad=-19.306

https://github.com/hkproj/pytorch-transformer-distributed
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Computational graph: step 2 (forward)

𝑥1 𝑧1 = 𝑥1𝑤1

𝑥2 𝑧2 = 𝑥2𝑤2

𝑦𝑝𝑟𝑒𝑑 = 𝑧1 + 𝑧2 + b

𝑏

𝑙 = 𝑦𝑝𝑟𝑒𝑑 − 𝑦𝑡𝑎𝑟𝑔𝑒𝑡
2

𝑦𝑡𝑎𝑟𝑔𝑒𝑡

𝑤1

𝑤2

𝑦𝑝𝑟𝑒𝑑 = 𝑥1𝑤1 + 𝑥2𝑤2 + 𝑏

We run a forward step using the input 𝑥1 = 5, 𝑥2 = 2 and 𝑦𝑡𝑎𝑟𝑔𝑒𝑡 = 12.

Value=0.773

Value=0.067

Value=0.321

5

2

3.8650

0.6420

4.5740

12

55.1455

Grad=-115.836

Grad=-38.612

Grad=-19.306

Note that during this forward 
step the gradient is not zero, 
because we didn’t zero it using 
optimizer.zero

https://github.com/hkproj/pytorch-transformer-distributed
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Computational graph: step 2 (loss.backward)

𝑥1 𝑧1 = 𝑥1𝑤1

𝑥2 𝑧2 = 𝑥2𝑤2

𝑦𝑝𝑟𝑒𝑑 = 𝑧1 + 𝑧2 + b

𝑏

𝑙 = 𝑦𝑝𝑟𝑒𝑑 − 𝑦𝑡𝑎𝑟𝑔𝑒𝑡
2

𝑦𝑡𝑎𝑟𝑔𝑒𝑡

𝑤1

𝑤2

𝑦𝑝𝑟𝑒𝑑 = 𝑥1𝑤1 + 𝑥2𝑤2 + 𝑏
Value=0.773

Value=0.067

Value=0.321

5

2

3.8650

0.6420

4.5740

12

55.1455

Grad=-115.836 + (-74.2600) = -190.096

Grad=-38.612 + (-29.704) = -68.3160

Grad=-19.306 + (-14.8520) = -34.1580

The new gradient is 
accumulated with the old one 
(summed up). Now that we have 
reached the batch size, we can 
run the optimizer.step method

https://github.com/hkproj/pytorch-transformer-distributed
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Computational graph: step 2 (optimizer.step)

𝑥1 𝑧1 = 𝑥1𝑤1

𝑥2 𝑧2 = 𝑥2𝑤2

𝑦𝑝𝑟𝑒𝑑 = 𝑧1 + 𝑧2 + b

𝑏

𝑙 = 𝑦𝑝𝑟𝑒𝑑 − 𝑦𝑡𝑎𝑟𝑔𝑒𝑡
2

𝑦𝑡𝑎𝑟𝑔𝑒𝑡

𝑤1

𝑤2

𝑦𝑝𝑟𝑒𝑑 = 𝑥1𝑤1 + 𝑥2𝑤2 + 𝑏
Value=0.773 - 𝜶(-190.096) = 0.9631

Value= 0.067 - 𝜶(- 34.1580) = 0.1012

Value= 0.321 - 𝜶(- 68.3160) = 0.3893

5

2

3.8650

0.6420

4.5740

12

55.1455

Grad=-190.096

Grad= -68.3160

Grad= -34.1580

https://github.com/hkproj/pytorch-transformer-distributed
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Computational graph: step 2 (optimizer.zero)

𝑥1 𝑧1 = 𝑥1𝑤1

𝑥2 𝑧2 = 𝑥2𝑤2

𝑦𝑝𝑟𝑒𝑑 = 𝑧1 + 𝑧2 + b

𝑏

𝑙 = 𝑦𝑝𝑟𝑒𝑑 − 𝑦𝑡𝑎𝑟𝑔𝑒𝑡
2

𝑦𝑡𝑎𝑟𝑔𝑒𝑡

𝑤1

𝑤2

𝑦𝑝𝑟𝑒𝑑 = 𝑥1𝑤1 + 𝑥2𝑤2 + 𝑏
Value=0.9631

Value= 0.1012

Value=0.3893

5

2

3.8650

0.6420

4.5740

12

55.1455

Grad=0

Grad=0

Grad=0

https://github.com/hkproj/pytorch-transformer-distributed
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Gradient descent (with accumulation)
Initial weights

Data Item 1 (loss.backward)

Data Item 2 (loss.backward)

Data Item 2 (optimizer.step)

Data Item 2 (optimizer.zero)

Data Item 1 (forward)

Data Item 2 (forward)

With gradient accumulation, we update the parameters of the model only after we 
accumulated the gradient of a batch

The two gradients are summed up

https://github.com/hkproj/pytorch-transformer-distributed
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Outline
• Introduction to distributed training

• Why we need it

• Data Parallel vs Model Parallel

• Review of neural networks

• Loss function and gradient

• Gradient accumulation

• Distributed Data Parallel training

• How it works

• Communication primitives

• Broadcast operator

• Reduce operator

• All-Reduce operator

• Managing failover

• Coding session

• Infrastructure (Paperspace)

• PyTorch code

• How PyTorch handles Distributed Data Parallel training

• Bucketing

• Computation-Communication overlap during backpropagation

https://github.com/hkproj/pytorch-transformer-distributed
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Layer 1

Layer 2

Layer 3

Layer 4

Data 1

Data 2

Data 3

Data 4

Layer 1

Layer 2

Layer 3

Layer 4

Data 1

Layer 1

Layer 2

Layer 3

Layer 4

Data 2

Layer 1

Layer 2

Layer 3

Layer 4

Data 3

Layer 1

Layer 2

Layer 3

Layer 4

Data 4

Layer 1

Layer 2

Layer 3

Layer 4

Data 3

Data 4

Data 1

Data 2

Layer 1

Layer 2

Layer 3

Layer 4

Data 2Data 1
Layer 1

Layer 2

Layer 3

Layer 4

Data 4Data 3

Multi-Server, Single-GPU

Single-Server, Multi-GPU

Multi-Server, Multi-GPU

In this video we will implement the 
multi-server, multi-GPU case using 
PyTorch and it will cover also the other 
two scenarios by adjusting the 
parameters.

https://github.com/hkproj/pytorch-transformer-distributed
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Distributed Data Parallel in detail

Layer 1

Layer 2

Layer 3

Layer 4

Data 2Data 1
Layer 1

Layer 2

Layer 3

Layer 4

Data 4Data 3

From now on, I will use the term “node” and “GPU” interchangeably. If a cluster is made up of 2 computers, each having 2 GPUs, 
then we have 4 nodes in total.

Distributed Data Parallel works in the following way:

1. At the beginning of the training, the model’s weights are initialized on one node and sent to all the other nodes (Broadcast)

2. Each node trains the same model (with the same initial weights) on a subset of the dataset.

3. Every few batches, the gradients of each node are accumulated on one node (summed up), and then sent back to all the other 
nodes (All-Reduce). 

4. Each node updates the parameters of its local model with the gradients received using its own optimizer.

5. Go back to step 2

https://github.com/hkproj/pytorch-transformer-distributed
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Distributed Data Parallel: step 1

Value=0.1

Model weights are initialized here (e.g., randomly)

Grad=0

https://github.com/hkproj/pytorch-transformer-distributed
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Distributed Data Parallel: step 1

Initial weights are sent to all the other nodes (Broadcast)

Value=0.1 Value=0.1 Value=0.1 Value=0.1

Grad=0 Grad=0 Grad=0 Grad=0

https://github.com/hkproj/pytorch-transformer-distributed
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Distributed Data Parallel: step 2

Each node runs a forward and backward step on one or more batch of data.
This will result in a local gradient. 
The local gradient may be the accumulation of one or more batches.

Value=0.1 Value=0.1 Value=0.1 Value=0.1

Grad=0.8 Grad=-0.2 Grad=-0.7 Grad=0.4

https://github.com/hkproj/pytorch-transformer-distributed
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Distributed Data Parallel: step 3

The sum of all the gradients is cumulated on one node (Reduce)

Value=0.1 Value=0.1 Value=0.1 Value=0.1

Grad=0.8 Grad=-0.2 Grad=-0.7 Grad=0.4

Grad_Sum=0.3

https://github.com/hkproj/pytorch-transformer-distributed
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Distributed Data Parallel: step 3

The cumulative gradient is sent to all the other nodes (Broadcast). 
The sequence of Reduce and Broadcast are implemented as a single operation (All-Reduce).

Value=0.1 Value=0.1 Value=0.1 Value=0.1

Grad=0.3 Grad=0.3 Grad=0.3 Grad=0.3

https://github.com/hkproj/pytorch-transformer-distributed
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Distributed Data Parallel: step 4

Each node updates the parameters of its local model using the gradient received.
After the update, the gradients are reset to zero and we can start another loop.

Value=0.2 Value=0.2 Value=0.2 Value=0.2

Grad=0 Grad=0 Grad=0 Grad=0

https://github.com/hkproj/pytorch-transformer-distributed
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Collective Communication Primitives
In distributed computing environments, a node may need to communicate with other nodes. If the communication pattern is similar 
to a client and a server, then we talk about point-to-point communication, because one client connects to one server in a request-
response chain of events. 

However, there are cases in which one node needs to communicate to multiple receivers at once: this is the typical case of data 
parallel training in deep learning: one node needs to send the initial weights to all the other nodes. Moreover, all the other nodes, 
need to send their gradients to one single node and receive back the cumulative gradient. Collective communication allows to 
model the communication pattern between groups of nodes.

Let’s visualize the difference between the two modes of communication.

https://github.com/hkproj/pytorch-transformer-distributed
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Point-To-Point
Imagine you need to send a file to 7 friends. With point-to-point communication, you’d send the file iteratively to each of the friend 
one by one. Suppose the internet speed is 1 MB/s and the file is 5 MB in size.

Total time: 5s

https://github.com/hkproj/pytorch-transformer-distributed
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Point-To-Point
Since the internet communication is 1 MB/s and the file is 5 MB in size, your connection would be split among the 7 friends (each 
friend would be receiving the file at ~ 143 KB/s). The total time is still 35s.

Total time: 35s

Let’s see how collective communication would manage this!

https://github.com/hkproj/pytorch-transformer-distributed
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Collective Communication: Broadcast
The operation of sending a data to all the other nodes is known as the Broadcast operator. Collective Communication libraries (e.g. 
NCCL) assign a unique ID to each node, known as RANK. Suppose we want to send 5 MB with an internet speed of 1 MB/s.

RANK 3RANK 1 RANK 2RANK 0 RANK 4 RANK 5 RANK 6 RANK 7

Total time: 5s

https://github.com/hkproj/pytorch-transformer-distributed
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Collective Communication: Broadcast
The operation of sending a data to all the other nodes is known as the Broadcast operator. Collective Communication libraries (e.g. 
NCCL) assign a unique ID to each node, known as RANK. Suppose we want to send 5 MB with an interned speed of 1 MB/s.

RANK 3RANK 1 RANK 2RANK 0 RANK 4 RANK 5 RANK 6 RANK 7

Total time: 10s

https://github.com/hkproj/pytorch-transformer-distributed
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Collective Communication: Broadcast
The operation of sending a data to all the other nodes is known as the Broadcast operator. Collective Communication libraries (e.g. 
NCCL) assign a unique ID to each node, known as RANK. Suppose we want to send 5 MB with an interned speed of 1 MB/s.

RANK 3RANK 1 RANK 2RANK 0 RANK 4 RANK 5 RANK 6 RANK 7

Total time: 15s

This approach is known as Divide-and-Conquer. With collective communication, we exploit 
the interconnectivity between nodes to avoid idle times and reduce the total communication 
time.

https://github.com/hkproj/pytorch-transformer-distributed
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Reduce operation
The Broadcast operator is used to send the initial weights to all the other nodes when we start the training loop.

At every few batches of data processed by each node, the gradients of all nodes need to be sent to one node and accumulated 
(summed up). This operation is known as Reduce. 

Let’s visualize how it works.

https://github.com/hkproj/pytorch-transformer-distributed
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Collective Communication: Reduce
Initially, each node has its own gradient.

RANK 3RANK 1 RANK 2RANK 0 RANK 4 RANK 5 RANK 6 RANK 7

Grad=0.1 Grad=-0.2 Grad=-0.3 Grad=0.5 Grad=-0.6 Grad=-0.1 Grad=0.2 Grad=0.3

https://github.com/hkproj/pytorch-transformer-distributed
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Collective Communication: Reduce
Each node sends the gradient to its adjacent node, who will sum it with its own gradient.

RANK 3RANK 1 RANK 2RANK 0 RANK 4 RANK 5 RANK 6 RANK 7

Grad=0.1 Grad=-0.2 Grad=-0.3 Grad=0.5 Grad=-0.6 Grad=-0.1 Grad=0.2 Grad=0.3

Grad_Sum=-0.1 Grad_Sum=0.2 Grad_Sum=-0.7 Grad_Sum=0.5

Step = 1

https://github.com/hkproj/pytorch-transformer-distributed
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Collective Communication: Reduce

RANK 3RANK 1 RANK 2RANK 0 RANK 4 RANK 5 RANK 6 RANK 7

Grad=0.1 Grad=-0.2 Grad=-0.3 Grad=0.5 Grad=-0.6 Grad=-0.1 Grad=0.2 Grad=0.3

Grad_Sum=0.1 Grad_Sum=-0.2

Step = 2

https://github.com/hkproj/pytorch-transformer-distributed
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Collective Communication: Reduce

RANK 3RANK 1 RANK 2RANK 0 RANK 4 RANK 5 RANK 6 RANK 7

Grad=0.1 Grad=-0.2 Grad=-0.3 Grad=0.5 Grad=-0.6 Grad=-0.1 Grad=0.2 Grad=0.3

Grad_Sum=-0.1

Step = 3

With only 3 steps we accumulated the gradient of all nodes into one node. It can be proven 
that the communication time is logarithmic w.r.t the number of nodes.

https://github.com/hkproj/pytorch-transformer-distributed
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Collective Communication: All-Reduce
Having accumulated the gradients of all the nodes into a single node, we need to send the cumulative gradient to all the nodes. 
This operation can be done using a Broadcast operator.

The sequence of Reduce-Broadcast is implemented by another operator known as All-Reduce, whose runtime is generally lower 
than the sequence of Reduce followed by a Broadcast. 

I will not show the algorithm behind All-Reduce, but you can think of it as a sequence of Reduce followed by a Broadcast 
operation.

https://github.com/hkproj/pytorch-transformer-distributed
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Failover: what happens if one node crashes?

Layer 1

Layer 2

Layer 3

Layer 4

Data 2Data 1

Layer 1

Layer 2

Layer 3

Layer 4

Data 4Data 3

Imagine you’re training in a distributed scenario like the one shown below and one of the nodes suddenly crashes. In these case, 2 
GPUs out of 4 become unreachable. How should the system react?

One way, would be to restart the entire cluster and that’s easy. However, by restarting the cluster, the training would restart from 
zero, and we would lose all the parameters and computation done so far. A better approach is to use checkpointing.

Checkpointing means saving the weights of the model on a shared disk every few iterations (for example every epoch) and 
resume the training from the last checkpoint in case there’s a crash.

https://github.com/hkproj/pytorch-transformer-distributed
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Failover: using checkpointing

Value=0.1

Model weights are initialized here (using the latest checkpoint)

Grad=0

Shared Storage
(Checkpoints)

We need a shared storage because PyTorch will decide 
which node will initialize the weights and we should make 
no assumption on which one will it be. So, every node 
should have access to the shared storage. Plus, it is good 
rule in distributed systems to not have one node more 
important than others, because every node can fail at any 
time.

https://github.com/hkproj/pytorch-transformer-distributed
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Failover: who should save the checkpoint?

Value=0.1

Grad=0

Shared Storage
(Checkpoints)

RANK 3RANK 1 RANK 2RANK 0

When we start the cluster, PyTorch will assign a unique ID (RANK) to each GPU. We will write our code in such a way that whichever 
node is assigned the RANK 0 will be responsible for saving the checkpoint, so that the other nodes do not overwrite each other’s 
files. So only one node will be responsible for writing the checkpoints and all the other files we need for training.

https://github.com/hkproj/pytorch-transformer-distributed
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LOCAL_RANK vs RANK

Layer 1

Layer 2

Layer 3

Layer 4

Data 2Data 1

Layer 1

Layer 2

Layer 3

Layer 4

Data 4Data 3

LOCAL_RANK

RANK

0 1 0 1

0 1 2 3

The environment variable LOCAL_RANK indicates the ID of the GPU on the local computer, while the RANK variable indicates the 
a globally unique ID among all the nodes in the cluster.

Please note that ranks are not stable, meaning that if you restart the entire cluster, a different node may be assigned the 
rank number 0.

Used to save checkpoint and/or initialize services (like W&B)

https://github.com/hkproj/pytorch-transformer-distributed
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How to integrate DistributedDataParallel into your project?

https://github.com/hkproj/pytorch-transformer-distributed
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Outline
• Introduction to distributed training

• Why we need it

• Data Parallel vs Model Parallel

• Review of neural networks

• Loss function and gradient

• Gradient accumulation

• Distributed Data Parallel training

• How it works

• Communication primitives

• Broadcast operator

• Reduce operator

• All-Reduce operator

• Managing failover

• Coding session

• Infrastructure (Paperspace)

• PyTorch code

• How PyTorch handles Distributed Data Parallel training

• Bucketing

• Computation-Communication overlap during backpropagation

Prerequisites
• Basic understanding of neural networks and PyTorch

• (Optional) watch my previous video on how to code a Transformer model from 
scratch

https://github.com/hkproj/pytorch-transformer-distributed
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When does PyTorch synchronize gradients?
PyTorch will synchronize the gradients every time we call the method loss.backward. This will lead to:

1. Each node calculating its local gradients (derivative of the loss function w.r.t each node of the computational graph)

2. Each node will send its local gradient to one single node and receives back the cumulative gradient (All-Reduce)

3. Each node will update its weights using the cumulative gradient and its local optimizer.

We can avoid PyTorch synchronizing the gradient at every backward step and instead, let it accumulate the gradient for a few steps 
by using the no_sync() context. Let’s see how it works.

https://github.com/hkproj/pytorch-transformer-distributed
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When does PyTorch synchronize gradients?

https://github.com/hkproj/pytorch-transformer-distributed
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PyTorch tricks: Computation-Communication overlap
Since each GPU needs to send its gradient to a central node for accumulation, this can lead to an idle time in which the GPUs are 
not working, but only communicating with each other. PyTorch handles this communication delay in a smart way. Let’s see how it 
works.

Forward

Backward

Communication 
(All-Reduce)

Update weights

IDLE

Forward

Backward
Communication 

(All-Reduce)

Update weights

IDLE

Computation-Communication overlap

https://github.com/hkproj/pytorch-transformer-distributed
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Computation-Communication overlap: details

LossOutputInput Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

W

B

W W W W

B B B B

https://github.com/hkproj/pytorch-transformer-distributed
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Computation-Communication overlap: details

LossOutputInput Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

W

B

W W W W

B B B B

All-Reduce

https://github.com/hkproj/pytorch-transformer-distributed
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Computation-Communication overlap: bucketing

LossOutputInput Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

W

B

W W W W

B B B B

Bucket 1

Instead of sending each gradient one by one, which would result in a large communication overhead, gradients are packed 
together into buckets of equal size. PyTorch recommends 25MB as the size of the bucket.

Bucket 2Bucket 3

https://github.com/hkproj/pytorch-transformer-distributed


Parallelism Fundamentals
CS 229S Fall 2023



Today’s Lecture

● Data parallelism
● Model Parallelism
● Pipeline Parallelism
● Practical challenges and solution for deploying parallelism in the real world



Model performance improves from all forms of scale

LLM performance improves from scaling up the total compute time, the dataset size, 
and the model size

Scaling Laws for Neural Language Models. Kaplan, et al. https://arxiv.org/pdf/2001.08361.pdf



LLMs exhibit emergent properties at scale

Scaling up to very large model and context sizes dramatically increases the capability of LLMs!

Language Models are Few-Shot Learners. Brown, et al. https://arxiv.org/pdf/2005.14165.pdf



Hardware improvements lag behind LLM scaling

GPU FLOPS performance doubles every ~2.5 years …but LLMs are getting ~10x bigger every year! 

Trends in GPU Price-Performance. Hobbhahn and Besiroglu. https://epochai.org/blog/trends-in-gpu-price-performance
Using DeepSpeed and Megatron to Train Megatron-Turing NLG 530B, A Large-Scale Generative Language Model. Smith, et al. https://arxiv.org/pdf/2201.11990.pdf



Parallelism is necessary to train and serve LLMs at scale

● We need to parallelize computation across multiple GPUs to handle the rapidly 
increasing scale of LLMs

● What are the key challenges when we start parallelizing LLMs?

○ Minimizing communication overhead: We want to minimize the time spent 
sending data between GPUs

○ Minimizing synchronization overhead: We want to minimize the 
dependencies between each GPU so that each GPU can proceed with its 
own computation independently

● Addressing these challenges are fundamental when it comes to designing 
parallel computing and distributed systems! (CS 149 and CS 244B for more 
detailed treatments)
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How can we partition computation?

Input 
data

We have two 
options for 
partitioning 

computation 
across devices

1. Partition the 
input data

2. Partition the 
model 
parameters
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● There are three widely adopted techniques for parallelizing LLMs:

○ Data parallelism: Partition the input data, and replicate the model weights

○ Model parallelism: Partition the model weights and replicate the input data

○ Pipeline parallelism: Partition the model weights across space and partition the 
input data across time

● Each of these techniques has tradeoffs which we will discuss

https://github.com/hkproj/pytorch-transformer-distributed


What are the main techniques for parallelizing LLMs?

● There are three widely adopted techniques for parallelizing LLMs:

○ Data parallelism: Partition the input data, and replicate the model weights

○ Model parallelism: Partition the model weights and replicate the input data

○ Pipeline parallelism: Partition the model weights across space and partition the 
input data across time

● Each of these techniques has tradeoffs which we will discuss

● These techniques are not mutually exclusive - they can be combined to build 
extremely efficient systems!


What are the main techniques for parallelizing LLMs?

● There are three widely adopted techniques for parallelizing LLMs:

○ Data parallelism: Partition the input data, and replicate the model weights

○ Model parallelism: Partition the model weights and replicate the input data

○ Pipeline parallelism: Partition the model weights across space and partition the 
input data across time

● Each of these techniques has tradeoffs which we will discuss

● These techniques are not mutually exclusive - they can be combined to build 
extremely efficient systems!

● These techniques are not exhaustive - this is an active area of research!
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Data parallelism

● We partition the input data on the 
batch dimension across the 
different GPUs

● For example, if we had 4 GPUs and 
a batch size of 64, then each GPU 
would receive an input sub-batch 
of size 16

● We replicate the model weights 
across the GPUs, meaning every 
GPU has a complete copy of all the 
weights



Data parallelism

● Forward and backward pass 
computation on each GPU 
proceeds independently

● Each GPU produces its own set of 
gradients for its own sub-batch

● At the end of the backward pass, 
the gradients are aggregated 
across all GPUs and averaged

● The GPUs share their gradients via 
an all-reduce operation

B2

B1

B0

B3



All-Reduce Algorithm Iteratively Shares Data Across GPUs

Horovod: fast and easy distributed deep learning in TensorFlow. Sergeev and Balso. https://arxiv.org/pdf/1802.05799.pdf 
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All-Reduce Algorithm Iteratively Shares Data Across GPUs

Horovod: fast and easy distributed deep learning in TensorFlow. Sergeev and Balso. https://arxiv.org/pdf/1802.05799.pdf 



All-reduce Algorithm

● Ring all-reduce proceeds in 2 * (N-1) iterations for a group of N GPUs

● In each iteration, each node sends fragments of its data to 2 of its peers

○ First N-1 iterations: each GPU adds received values to its own data

○ Next N-1 iterations: each GPU replaces its own data with received values



Ring All-reduce Efficiency Analysis

● Total volume of data sent (N is the total number of GPUs): 

○ Assume each GPU has data of size X bytes

○ Then each node sends (2 * (N-1))  * X/N bytes

Bandwidth Optimal All-reduce Algorithms for Clusters of Workstations. Patarasuk and Yuan. https://www.cs.fsu.edu/~xyuan/paper/09jpdc.pdf

https://github.com/hkproj/pytorch-transformer-distributed


Ring All-reduce Efficiency Analysis

● Total volume of data sent (N is the total number of GPUs): 

○ Assume each GPU has data of size X bytes

○ Then each node sends 2 * (N-1)  * X/N bytes

●  Total time to complete all-reduce operation:

○ Assume network bandwidth of B bytes / second

○ Then the communication runtime is 2 * (N-1) * X /(N*B) seconds

Bandwidth Optimal All-reduce Algorithms for Clusters of Workstations. Patarasuk and Yuan. https://www.cs.fsu.edu/~xyuan/paper/09jpdc.pdf
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○ Most direct approach for increasing throughput since global batch size 
increases with each additional GPU

○ Relatively easy to implement (e.g. built-in support from PyTorch)



Data Parallelism

● What are the pros of data parallelism?

○ Most direct approach for increasing throughput since global batch size 
increases with each additional GPU

○ Relatively easy to implement (e.g. built-in support from PyTorch)

● What are the cons of data parallelism?

○ Requires the model weights and activations to fit in GPU memory (e.g. 
impossible to run GPT-3 with pure data parallelism on an 80 GB GPU)

○ Communication-intensive - every weight must be synchronized across all 
GPUs



Data Parallelism
● The main limitation of data parallelism is the high 

memory requirement

● If we train model with P parameters using 
mixed-precision training: 

○ fp16 model parameters: 2P bytes

○ fp16 gradients: 2P bytes

○ Adam optimizer states

■ fp32 model parameters: 4P bytes

■ fp32 momentum: 4P bytes

■ fp32 variance: 4P bytes

○ Total: 2P + 2P + 4P + 4P + 4P = 16P bytes just 
for parameters and optimizer states

Mixed Precision Training. Narang, et al. https://arxiv.org/pdf/1710.03740.pdf
ZeRO: Memory Optimizations Toward Training Trillion Parameter Models. Rajbhandari et al. https://arxiv.org/pdf/1910.02054.pdf 

Mixed precision training

https://github.com/hkproj/pytorch-transformer-distributed


●  We can significantly reduce memory usage by using the ZeRO techniques 
(Zero-Redundancy Optimizer)

Data Parallelism

ZeRO: Memory Optimizations Toward Training Trillion Parameter Models. Rajbhandari et al. https://arxiv.org/pdf/1910.02054.pdf 

P: number of parameters

K: storage multiplier for the 
optimizer state

P



ZeRO

● Stage 1: Optimizer state partitioning

○ Group the optimizer states into Nd equal partitions, 
such that the i-th (data parallel) process only 
updates the state for the i-th partition

ZeRO: Memory Optimizations Toward Training Trillion Parameter Models. Rajbhandari et al. https://arxiv.org/pdf/1910.02054.pdf 

Mixed precision training


ZeRO
● Stage 1: Optimizer state partitioning

○ Group the optimizer states into Nd equal partitions, 
such that the i-th (data parallel) process only 
updates the state for the i-th partition

○ Each process performs an all-gather across the Nd 
processes at the end of each training step to get 
the fully updated parameters

ZeRO: Memory Optimizations Toward Training Trillion Parameter Models. Rajbhandari et al. https://arxiv.org/pdf/1910.02054.pdf 

ZeRO Stage c Memory Usage
(bytes)

Baseline 16P

Stage 1: Pos 4P + 12P / Nd

Mixed precision training



ZeRO

● Stage 2: Optimizer state + gradient partitioning

○ As each data parallel process only updates its own 
parameter partition, it only needs the reduced 
gradients for the corresponding parameters

○ This reduces the memory footprint required to hold 
the gradients on each data parallel process from 2P 
bytes to 2P / Nd 

○ Memory savings: By removing both gradient and 
optimizer state redundancy, we reduce the memory 
footprint further down to:

2P + 14P / Nd ≈ 2P 

ZeRO: Memory Optimizations Toward Training Trillion Parameter Models. Rajbhandari et al. https://arxiv.org/pdf/1910.02054.pdf 

ZeRO Stage c Memory Usage
(bytes)

Baseline 16P

Stage 1: Pos 4P + 12P / Nd

Stage 2: Pos + g 2P + 14 P / Nd

Weights in fp16 Gradients in fp16 and optimizer state



ZeRO

● Stage 3: Optimizer state + gradient + parameter 
partitioning

○ Instead of storing all parameters on all data parallel 
processes, we can just fetch (i.e. gather) the 
parameters we need to compute the forward and 
backward pass 

○ This approach increases the total communication 
volume by 1.5x*, but reduces memory proportional 
to Nd 

○ Memory savings: With parameter partitioning, we 
reduce the memory consumption 16P to 16P / Nd 

*See paper for more details.
ZeRO: Memory Optimizations Toward Training Trillion Parameter Models. Rajbhandari et al. https://arxiv.org/pdf/1910.02054.pdf 

ZeRO Stage Memory Usage
(bytes)

Baseline 16P

Stage 1: Pos 4P + 12P / Nd

Stage 2: Pos + g 2P + 14 P / Nd

Stage 3: Pos + g + p 16P / Nd



PyTorch FSDP

FullyShardedDataParallel. https://pytorch.org/docs/stable/fsdp.html

● The PyTorch FSDP (Fully Sharded Data Parallel) API implements data parallelism with ZeRO 
optimizations 

● Example usage:

import torch
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP

torch.cuda.set_device(device_id)

module = … # Module definition

sharded_module = FSDP(module)
optim = torch.optim.Adam(sharded_module.parameters(), lr=0.0001)

x = … # Input data
y = sharded_module(x)

loss = y.sum()
loss.backward()

optim.step()



Model Parallelism

● Another way to reduce memory usage is model parallelism: replicate the input 
data, but partition the model weights

● Two general approaches for model parallelism:

○ Slice the model “vertically”: place subsets of layers on different GPUs

○ Slice the model “horizontally”: shard the model weights across different 
GPUs

● We will discuss the pros and cons of each these approaches

https://github.com/hkproj/pytorch-transformer-distributed


Model Parallelism

Vertically slicing the model gives each GPU its own subset of layers


Model Parallelism

Vertical slicing severely lowers hardware utilization because the devices are frequently idle

PipeDream: Generalized Pipeline Parallelism for DNN Training. Narayanan et al. https://deepakn94.github.io/assets/papers/pipedream-sosp19.pdf



Model Parallelism

Horizontally slicing the model shards the layers across the devices



Tensor Model Parallelism for LLMs

● For Transformer-based LLMs specifically, we can shard the self-attention and 
subsequent MLP weights (Megatron-style or tensor model parallelism)

● This requires adding an all-reduce after every attention and MLP computation to 
synchronize the weights

Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism. Shoeybi et al. https://arxiv.org/pdf/1909.08053.pdf 



Tensor Model Parallelism

● What are the pros of tensor model parallelism (in particular Megatron)?

○ Reduces the amount of memory required per GPU

○ Keeps GPU utilization high compared to vertical slicing

https://github.com/hkproj/pytorch-transformer-distributed


Tensor Model Parallelism

● What are the pros of tensor model parallelism (in particular Megatron)?

○ Reduces the amount of memory required per GPU

○ Keeps GPU utilization high compared to vertical slicing

● What are the cons of tensor model parallelism (in particular Megatron)?

○ Very frequent synchronization (all-reduces) means we need extremely fast 
network connections to maintain high throughput

○ Not as easy to implement as data parallelism - need to add the 
synchronization ops manually to your Attention module


Tensor Model Parallelism 

● Model parallelism solved our memory usage problem, but it requires very fast 
networking hardware due to the frequent all-reduces

● What do we do if we don’t have high-memory GPUs or high-bandwidth network 
interconnect?

● Let’s revisit the vertical slicing we saw earlier

○ This approach also reduces per-GPU memory usage 

○ No all-reduces necessary - just send activations or 
gradients from one GPU to the next

○ Downside is poor GPU utilization - can we fix this?

PipeDream: Generalized Pipeline Parallelism for DNN Training. Narayanan et al. https://deepakn94.github.io/assets/papers/pipedream-sosp19.pdf



Pipeline Parallelism

● We can apply the well-known technique of pipelining to improve GPU utilization 

● Pipeline parallelism splits each batch into microbatches and injects multiple 
microbatches into the pipeline

● This can significantly reduce the amount of idle time on each GPU

Without pipelined computation With pipelined computation

PipeDream: Generalized Pipeline Parallelism for DNN Training. Narayanan et al. https://deepakn94.github.io/assets/papers/pipedream-sosp19.pdf



● Pipeline parallelism introduces two new considerations:

○ How to set the microbatch size

■ Larger microbatches = higher arithmetic intensity, smaller microbatches = smaller pipeline 
bubbles

○ How to decide the schedule of pipelined computation

■ We can dynamically choose which microbatches or layers to execute at each step; this will 
impact the pipeline bubble size

Pipeline Parallelism

GPipe schedule 1F1B schedule
Memory-Efficient Pipeline Parallel DNN Training. Narayanan et al. https://arxiv.org/pdf/2006.09503.pdf



Pipeline Parallelism for LLMs

● We can extend pipeline parallelism to LLMs by pipelining specifically on the 
sequence dimension

● In particular, we can split the input sequence into subsequences and have each 
stage process the tokens for each subsequence incrementally

TeraPipe: Token-Level Pipeline Parallelism for Training Large-Scale Language Models. Li et al. https://arxiv.org/pdf/2102.07988.pdf



Pipeline Parallelism

● What are the pros of pipeline parallelism?

○ Reduces the amount of memory required per GPU

○ Minimizes communication across GPUs (only point-to-point send 
operations instead of all-reduces)



Pipeline Parallelism

● What are the pros of pipeline parallelism?

○ Reduces the amount of memory required per GPU

○ Minimizes communication across GPUs (only point-to-point send 
operations instead of all-reduces)

● What are the cons of pipeline parallelism?

○ Still suffers from low GPU utilization due to pipeline bubbles

○ Difficult to implement because it requires scheduling the different 
microbatches to be executed concurrently

https://github.com/hkproj/pytorch-transformer-distributed


Summary of Different Parallelism Approaches

● In summary:

○ Data parallelism is effective if the model weights and activations fit into 
GPU memory

○ Tensor model parallelism is effective if the model weights and activations 
do not fit into GPU memory but we have a single server with very fast 
networking hardware

○ Pipeline parallelism is effective if the model weights and activations do not 
fit into GPU memory and we have multiple servers or a single server without 
fast networking hardware

● …but we do not have to choose just one parallelism strategy!


End of Lecture 8



Appendix



3D / Pipeline-Tensor-Data (PTD) Parallelism

● We can use data 
parallelism, tensor 
model parallelism, and 
pipeline parallelism 
together (3D or PTD 
parallelism) to scale to 
thousands of GPUs 

● This will be the focus of 
the Lecture 10 

DeepSpeed: Extreme-scale model training for everyone. DeepSpeed Team, Majumder, and Wang. https://www.microsoft.com/en-us/research/blog/deepspeed-extreme-scale-model-training-for-everyone/ 
Efficient Large-Scale Language Model Training on GPU Clusters using Megatron-LM. Narayanan, et al. https://dl.acm.org/doi/pdf/10.1145/3458817.3476209



Practical Challenges When Deploying Parallelism

● Practical challenges when trying to deploy parallelism:

○ The space of possible strategies grows combinatorially large

○ Experimenting with different parallelization strategies is slow / expensive 
at the scale of hundreds or thousands of GPUs

● Can we automate parallelization for a given model and cluster?


Automatic Parallelization with Alpa

● Alpa is a system for automatically selecting and executing the optimal parallelism strategy for a given model and cluster

● Alpa separately considers inter-operator parallelism (i.e. pipeline parallelism) and intra-operator parallelism (i.e. data and 
tensor model parallelism)

Alpa: Automating Inter- and Intra-Operator Parallelism for Distributed Deep Learning. Zheng et al. OSDI 2022  https://arxiv.org/pdf/2201.12023.pdf


Automatic Parallelization with Alpa

● Alpa will automatically search over the space of possible parallelism strategies for a 
given graph and choose the optimal combination of inter-op and intra-op parallelism

Alpa: Automating Inter- and Intra-Operator Parallelism for Distributed Deep Learning. Zheng et al. https://arxiv.org/pdf/2201.12023.pdf



Automatic Parallelization with Alpa

Alpa: Automating Inter- and Intra-Operator Parallelism for Distributed Deep Learning. Zheng et al. https://arxiv.org/pdf/2201.12023.pdf
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Automatic Parallelization with Alpa

Alpa: Automating Inter- and Intra-Operator Parallelism for Distributed Deep Learning. Zheng et al. https://arxiv.org/pdf/2201.12023.pdf

https://github.com/hkproj/pytorch-transformer-distributed


Conclusion

● We need to parallelize data and models to train and serve LLMs at scale

● The most widely used forms of parallelism are data parallelism, tensor model 
parallelism, and pipeline parallelism

● Each of these parallelization strategies has trade-offs depending on the 
amount of memory usage and communication overhead

● Techniques such as Alpa can help automate the decision of which 
parallelization strategy or strategies to use


