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Hilbert Spaces

Recall that any inner product space V' has an associated norm defined by

VIl = v {v,v).

Thus an inner product space can be viewed as a special kind of normed vector space.
In particular, every inner product space V has a metric defined by

dv,w) = [[v-w| = V/(v-w,v—w).

Definition: Hilbert space
A Hilbert space is an inner product space whose associated metric is complete.

That is, a Hilbert space is an inner product space that is also a Banach space.
For example, R" is a Hilbert space under the usual dot product:

(viw) = v W = vqwi + - + Wy

More generally, a finite-dimensional inner product space is a Hilbert space. The
following theorem provides examples of infinite-dimensional Hilbert spaces.

Theorem 1 L2 is a Hilbert Space

For any measure space (X, ), the associated L?-space L*(X) forms a Hilbert
space under the inner product

(f,9) = /ngdu-

PROOF The norm associated to the given inner product is the L*-norm:

17l = VD = /X F2du = Il



We have already proven that L?*(X) is complete with respect to this norm, and hence
L?(X) is a Hilbert space. |

In the case where X = N, this gives us the following.

Corollary 2 ¢? is a Hilbert Space

The space 02 of all square-summable sequences is a Hilbert space under the inner

product
<V7W> B Zvnwn-

£2-Linear Combinations

We now turn to some general theory for Hilbert spaces. First, recall that two vectors
v and w in an inner product space are called orthogonal if (v, w) = 0.

Proposition 3 Convergence of Orthogonal Series

Let {v,} be a sequence of orthogonal vectors in a Hilbert space. Then the series
[©.9]
> Va
n=1

converges if and only if

> TPl < po.

PROOF Let s, be the sequence of partial sums for the given series. By the Pythagorean
theorem,

2 J
=1 Y Ivalf*

n=i+1

J
2] ve

n=1+1

Isi — 551" =

for all ¢ < j. It follows that {s,} is a Cauchy sequence if and only if Y > ||v,|?
converges. |



We wish to apply this proposition to linear combinations of orthonormal vec-
tors. First recall that a sequence {u,} of vectors in an inner product space is called

orthonormal if
d S 7 12 S
1R e S
for all ¢+ and j.

Corollary 4 ¢*-Linear Combinations

Let {u,} be an orthonormal sequence of vectors in a Hilbert space, and let {a,}
be a sequence of real numbers. Then the series

(o]

E apUy,

n=1

converges if and only if the sequence {a,} lies in (2.

In general, if {a,} is an ¢? sequence, then the sum

00
g apUy
n=1

is called a £2-linear combination of the vectors {u,}. By the previous corollary,
every (?-linear combination orthonormal vectors in a Hilbert space converges

Proposition 5 Inner Product Formula

Let {u,} be an orthonormal sequence of vectors in a Hilbert space, and let

(0,] (0.
\| = E ap,u,, and w = E b,u,
n=1 n=1

be (*-linear combinations of the vectors {u,}. Then

(v,w) = i": @0
n=1




PROOF Let sy = 22;1 anl, and ty| = Zivzl b,u,, and note that sy — v and
ty — w as N — oo. Since the inner product (—, —) is a continuous function, it
follows that
N 00
<V7W> = ]\ll_I)noo<SN7tN> S ]\ll_l)noozlanbn = Zlanbn n
n= MES

In the case where v = w, this gives the following.

Corollary 6 Norm Formula

Let {u,} be an orthonormal sequence of vectors in a Hilbert space, and let

[e.o]

V= E a,u,

n=1

be an (%-linear combination of these vectors. Then

We can also use the inner product formula to find a nice formula for the coefficients
of an /%-linear combination.

Corollary 7 Formula for the Coefficients

Let {u,} be an orthonormal sequence of vectors in a Hilbert space, and let

oo
vV = E anp Uy,
n=1

be an (?-linear combination of these vectors. Then for alln € N,

an, = (up, V).

PROOF Given an n € N, we can write u, = >~ byuy, where b, = 1 and b, = 0



for all k # n. By the inner product formula, it follows that

(e}

(u,|v)|= Zakbk = |

k=1

In general, we say that a vector v is in the £2-span of {u,} if v can be expressed
as an £>-linear combination of the vectors {u, }. According to the previous corollary,
any vector v in the ¢?-span of {u,} can be written as

It follows that

and

(v,w) =3 (U, v)(u,, w)

n=1

for any two vectors v and w in the £*-span of {u,}.

Projections

Definition: Projection Onto a Subspace
Let V' be an inner product space, let S be a linear subspace of V, and let v € V.
A vector p € S is called the projection of v onto S if

(s,v—p) =0

foralls € S.

It is easy to see that the projection p of v onto S, if it exists, must be unique. In
particular, if p; and py are two possible projections, then

||P1 o p2H2 = <p1 — P2, P1 T p2> = <p1 —|P2,|V 7 P2> ~ <p1 eID 2NN P1>7

and both of the inner products on the right are zero since p; — ps € S.
It is always possible to project onto a finite-dimensional subspace.



Proposition 8 Projection Onto Finite-Dimensional Subspaces

Let V' be an inner product space, let S be a finite-dimensional subspace of V,
and let {uy,...,u,} be an orthonormal basis for S. Then for any v € V, the

vector
n

B Z(Ukavﬁlk

k=1

1s the projection of v onto S.

PROOF Observe that (ug, p) = (uy,v) for each k, and hence (u;, v — p) = 0 for
each k. By linearity, it follows that (s,v — p) = 0 for all s € S, and hence p is the
projection of v onto S. |

Our goal is to generalize this proposition to the ¢-span of an orthonormal se-
quence.

Lemma 9 Bessel’s Inequality

Let V' be a Hilbert space, let {u,} be an orthonormal sequence in V, and let
v € V. Then

Y (w,,v)? < P
n=1
PROOF Let N € N, and let
N
PN = Z<unav>un
n=1

be the projection of v onto Span{uy,...,uy}. Then (py,v — py) = 0, so by the
Pythagorean theorem

IVI? = Ipxl® +1lv = pall® = Ipxl® = > (uav)™

n=1

This holds for all N € N, so the desired inequality follows. |



Proposition 10 Projection Formula

Let V' be a Hilbert space, and let {u,} be an orthonormal sequence of vectors
in'V.. Then for any v € V, the sequence {(un,v)} is 02, and the vector

o0

p—= Z(un,v>un

n=1

is the projection of v onto the (*-span of {u,}.

PROOF Bessel’s inequality shows that the sequence {(un,v>} is /2, and thus the
sum for p converges. By the coefficient formula (Corollary, we have that

(u,,p) = (u,,v)

for all n € N, and hence (u,,v — p) = 0 for all n € N. By the continuity of (—, —),
it follows that (s,v — p) = 0 for any s in the ¢*-span of {u,}, and hence p is the
projection of v onto this subspace. |

Hilbert Bases

Definition: Hilbert Basis
Let V' be a Hilbert space, and let {u, } be an orthonormal sequence of vectors in V.
We say that {u,} is a Hilbert basis for V if for every v € V there exists a sequence

{ay} in £2 so that

o0

= g apWy,.

n=1

That is, {u,} is a Hilbert basis for V if every vector in V is in the ¢?-span of {u,}.
For convenience, we are requiring all Hilbert bases to be countably infinite, but in
the more general theory of Hilbert spaces a Hilbert basis may have any cardinality.

Note that a Hilbert basis {u,} for V' is not actually a basis for V" in the sense of
linear algebra. In particular, if {a,} is any ¢* sequence with infinitely many nonzero

terms, then the vector
o

E GpUp,

n=1



cannot be expressed as a finite linear combination of Hilbert basis vectors. Of course,
it is clearly much more useful to allow ¢?-linear combinations, and in the context of
Hilbert spaces it is common to use the word basis to mean Hilbert basis, while a
standard linear-algebra-type basis is referred to as a Hamel basis.

EXAMPLE 1 The Standard Basis for (2

Consider the following orthonormal sequence in £?:
el = (1JU,0,0,1-.) e, = (0/1,0,0, ..}, e = (00, 1,0, 1],

If v = (v1,v9,...) is a vector in £2, it is easy to show that

e
n=1
and therefore {e,} is a Hilbert basis for (2. |

This example is in some sense quite general, as shown by the following proposition.

Proposition 11 Isomorphism With (>

Let V' be a Hilbert space, and suppose that V' has a Hilbert basis {u,}. Then
there exists an isometric isomorphism T: (2 — V such that T(e,) = u, for
each n.

PROOF Define a function T': £> — V by

o0

Wlai ot Z apU,y,.

n=1

Clearly T is linear. Note also that T is a bijection, with inverse given by

T=Hv) = ({ur,v), (ug, v}, ),

and hence T’ is a linear isomorphism. Finally, we have

[o's)
E Ap Uy,
n=1

for all (ay,as,...) € £, so T is isometric. |

HT(al,ag, e )H =




Proposition 12 Characterization of Hilbert Bases

Let V' be a Hilbert space, and let {u,} be an orthonormal sequence of vectors
in V. Then the following are equivalent:

1. The sequence {u,} is a Hilbert basis for V.
2. The set of all finite linear combinations of elements of {u,} is dense in V.

3. For every nonzero v € V, there exists ann € N so that (u,,v) # 0.

PROOF Let S be the set of all finite linear combinations of elements of {u,,}, i.e. the
linear span of {u,}. We prove that (1) = (2) = (3) = (1).

(1) = (2) Suppose that {u,} is a Hilbert basis, and let v € V. Then

o)
vV = E an,uy,
n=1

for some £? sequence {a, }. Then v is the limit of the sequence of partial sums

N

SN = E GpUp,

n=1

so v lies in the closure of S.

(2) = (3) Suppose that S is dense in V, and let v be a nonzero vector in V. Let
{sn} be a sequence in S that converges to v. Then there exists an n € N so
that [|s, — v|| < ||v||, and it follows that

Isnll” + [[VII* — llsn = vII* _ llsnll®

ny = > =40:
(Sn, V) 5 >

But since s,, € S, we know that s,, € Span{u,...,u;} for some k € N, and it
follows that (u;, v) # 0 for some i < k.

(3) = (1) Suppose that condition (3) holds, let v € V, and let

e}

P = Z<unav>un
n=1
be the projection of v onto the ¢*-span of {u,} (by Proposition . Then
(u,,p—v) = 0 for all n € N, so by condition (3) the vector p — v must be

zero. Then v = p, so v lies in the ¢*-span of {u,}, which proves that {u,} is a
Hilbert basis. ]
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Fourier Series

The theory of Hilbert spaces lets us provide a nice theory for Fourier series on the
interval [—m, 7]. We begin with the following theorem.

Theorem 13 Density of Continuous Functions

For any closed interval [a,b] C R, the continuous functions on |a,b] are dense
in L?([a, b]).

PROOF Sce Homework 7, Problem 2 for a proof in the L' case. The L? case is
quite similar. ]

It follows that any closed subset of L?([a, b]) that contains the continuous functions
must be all of L?([a, b]).

Theorem 14 The Fourier Basis

The sequence
1 COS T sinx CoSs 2x sin 2x cos 3x sin 3z
\/%7 ﬁ ] ﬁ ) \/E ) ﬁ ) ﬁ 7 \/7_T )

is a Hilbert basis for L*([—, 7).

PROOF It is easy to check that the given functions are orthonormal. Let S be
the set of all finite linear combinations of the basis elements, i.e. the set of all finite
trigonometric polynomials. By Proposition it suffices to prove that S is dense
in L2([—m, @)).

Let C(T) be the set of all continuous functions f on [—m, 7] — R for which
f(=m) = f(m). By Homework 10, every function in C(7") is the uniform limit (and
hence the L? limit) of trigonometric polynomials; so the closure of S contiains C(T).
But clearly every continuous function on [a, b] is the L? limit of functions in C(T),
and hence the closure of S contains every continuous function. By Theorem , we
conclude that the closure of S is all of L*([—,7]). |

In general, an orthogonal sequence { f,,} of nonzero L? functions on [a, b] is called a
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complete orthogonal system for [a, b] if the sequence { f,/||f.||2} of normalizations
is a Hilbert basis for Lz([a, b]) According to the above theorem, the sequence

1, | cosz,| sinz| cos2zx, | sin2x, |cosBzx,| sindz,

3

is a complete orthogonal system for the interval [—m, 7].

Definition: Fourier Coefficients
Let f: [-m,n] — R be an L? function. Then the Fourier coefficients of f are

defined as follows:

EEE AN,
= fdm,
= \/[ﬂ-:ﬂ-] 2

27 :%

b 1, ¢os 1) =t l/ f(z) cosnx dm(z),
[—.7]

™ ™

el = 1f.smre) = l/ f(z) sinnx dm(z).
[—7]

™ s

Note that the Fourier coeflicients are the coeflicients for the functions
l, |cosz,| sinz,| cos2zx, |sin2z, cosdz,| sindz, | ..|

which are not unit vectors. The actual coeflicients of the Hilbert basis vectors are

avon, {bnﬁ}, and {cnﬁ}

Corollary 15 Riesz-Fischer Theorem

Let f: [—m, 7] = R be an L? function with Fourier coefficients a, {b,} and {c,}.
Then {b,} and {c,} are (* sequences, and the Fourier series

a + Z (bn cosnT + ¢, sin na:)

E=a

converges to f in L.

PROOF This follows from Theorem and the coefficient formula (Corollary. |
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Corollary 16 Parseval’s Theorem

Let f: [—m, 7] = R be an L? function with Fourier coefficients a, {b,}, {c,},
and let g: [—m, 7] — R be an L* function with fourier coefficients A, {B,},
and {C,}. Then

1 o0
—/ fadm = 2@A+Z(bn3n+cn0n).
[777771-]

T
n=1

PROOF By the inner product formula (Proposition, we have
(f,9) = (av2m) (AV2r) + 3 ((6.V7) (Bav/'T) + (cav/T) (Cav/T) )
n=1

and dividing through by 7 gives the desired formula. |

In the case where g = f, this theorem yields Parseval’s identity:

l/ fzdm:2a2+2(bi+ci).
[=m,7] =

™

Corollary 17 Isomorphism of L? and ¢?

If a <b, then L*([a,b]) and > are isometrically isomorphic.

PROOF Since

1 COS & sin x Ccos 2x sin 2x cos 3x sin 3z
\/%7 ﬁ ) ﬁ ) ﬁ ) ﬁ ) ﬁ ') ﬁ )

is a Hilbert basis for L?([—m, 7]}, it follows from Propositionthat the linear trans-
formation T': (2 — L?([—m, ) defined by

S +agcosx+agsinx+a40052x+a5sin2x
ST NG N NG

is an isometric isomorphism. |

T(CLl, as, as, . . )
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Other Orthogonal Systems

The Fourier basis is not the only Hilbert basis for LQ([CL, b]) Indeed, many such
families of orthogonal functions are known. In this section, we derive an orthonormal
sequence of polynomials that is a Hilbert basis for LZ([a, b])

Consider the sequence of functions

2 3
17 xz, x-, z,

on the interval [—1, 1]. These functions are not a Hilbert basis for L*([—1,1]), since
they are not orthonormal. However, it is possible to use these functions to make a
Hilbert basis of polynomials via the Gram-Schmidt process. We start by making
the the constant function 1 into a unit vector:

1 1
2l bl v M Y 3

The function z is already orthogonal to py on the interval [—1,1], so we normalize z

as well:
T 3
) = —— = 24/ =.
AlEr \ﬁ

Now we want a quadratic polynomial orthogonal to py and p;. The function z? is
already orthogonal to p;, but not to p,. However, if we subtract from 22 the projection
of 22 onto py, then we get a quadratic polynomial orthogonal to py:

1
T <p0,:c2)p0(x) =t =

3
=350

Continuing in this fashion, we obtain an orthonormal sequence {p,} of polynomi-
als, where each p, is obtained from z" by subtracting the projections of z" onto
Do, - - -y Pn—1 and then normalizing.

Normalizing gives:

Definition: Legendre Polynomials
The normalized Legendre polynomials are the sequence of polynomial functions
Pn: [=1,1] = R defined recursively by po(z) = 1/4/2 and

DLl = <I" — i<pk,xn>pk($)>

for n > 1, where the constant ¢, > 0 is chosen so that ||p,|l> = 1.
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Figure 1: The normalized Legendre polynomials py, ..., ps.

By design, each normalized Legendre polynomial p,(x) has degree n, and the
sequence {py }n>o is orthonormal. The next few such polynomials are

SRYA T4 ol i

T (x)—ﬁ :1:4—93132—1-i
B 3 P4 _8\/§ 7 35 )

Figure shows the graphs of the first six normalized Legendre polynomials.

Theorem 18 The Legendre Basis

The sequence pg, p1, P2, - - -
Jor L2([-1,1]).

of normalized Legendre polynomials is a Hilbert basis

PROOF Let S be the linear span of pg, p1, pa, .

... Since

n—1
" = @ L Z<pk,x">pk(x),
o k=0

the subspace S contains each x™, and hence contains all polynomials. By the Weier-
strass approximation theorem, every continuous function on [—1, 1] is a uniform limit
(and hence and L? limit) of a sequence of polynomials. It follows that the closure
of S contains all the continuous functions, and hence contains all L? functions by

Theorem [13]
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Thus every L? function f on [—1,1] can be written as the sum of an infinite

Legendre series
(0.9]

[ = Z(pmf>pn'
n=0
These behave much like Fourier series, with analogs of Parseval’s theorem and Par-
seval’s identity.

Legendre polynomials are important in partial differential equations. For the
following definition, recall that a harmonic function on a closed region in R? is any
continuous function that satisfies Laplace’s equation V2f = 0 on the interior of the
region.

Definition: Dirichlet Problem on a Ball
Let B? denote the closed unit ball on R3, and let S? denote the unit sphere. The
Dirichlet problem on B3 can be stated as follows:

Given a continuous function f: S? — R, find a harmonic function
F: B> — R that agrees with f on S2.

Since we are working on the ball, it makes sense to use spherical coordinates

(p,0,¢), which are defined by the formulas
x = pcosfsin o, y = psinfsin @, = pcoso.

Using spherical coordinates, one family of solutions to Laplace’s equation on the ball
can be written as follows:

F(p,0,¢) = p"pp(cos o)

where p,, is the nth Legendre polynomial. These solutions are all axially symmetric
around the z-axis, meaning that they have no explicit dependence on 6.

Since the Legendre polynomials are a Hilbert basis, we can use these solutions to
solve the Dirichlet problem for any axially symmetric function f: S? — R. All we do
is write f as the sum of a Legendre series

f(6,8) = anpn(cosd),
n=0

and then the corresponding harmonic function F' will be defined by the formula

F(p,0,8) = D anp"pn(cos ).
n=0
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EXAMPLE 1 Let f: S? — R be the function defined by

Flaesyrz)-= 22

Find a harmonic function F': B® — R that agrees with f on S2.
SOLUTION Note that z = cos ¢ on S?, so we can write f as

f(8,0) = cos’o.
Since
Dol =10 and o) = 02(91:2 = %)
where ¢y = 1/v/2 and ¢, = 1/45/8, we can write f as

0,0 = ipo(cos o) + épz(cos b).

300

Then the corresponding harmonic function F: B3 — R is given by

Flo6,.6] = — i L Lo (oot o m
(1.0,6) = 3=(cos0) + Epaleoss) = 3+ (coo - 3 ).

The functions p,(cos¢) on the unit sphere can be generalized to the family of
spherical harmonics Y;,,(6, ¢), which are a Hilbert basis for L?(5?). The Legendre
polynomials defined above correspond to the m = 0 case:

() %_sz(cos 9).

Every L? function f on the sphere has a Fourier decomposition in terms of spherical
harmonics:

In quantum mechanics, these spherical harmonics give rise to the eigenfunctions of
the square of the angular momentum operator. These are known as atomic orbitals,
and can be used to describe the quantum wave functions of electrons in an atom.



